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ABSTRACT
Data races are a common source of errors in multithreaded
programs. In this paper, we show how to protect a pro-
gram from data race errors at runtime by executing multiple
replicas of the program with complementary thread sched-
ules. Complementary schedules are a set of replica thread
schedules crafted to ensure that replicas diverge only if a
data race occurs and to make it very likely that harmful
data races cause divergences. Our system, called Frost1,
uses complementary schedules to cause at least one replica
to avoid the order of racing instructions that leads to incor-
rect program execution for most harmful data races. Frost
introduces outcome-based race detection, which detects data
races by comparing the state of replicas executing comple-
mentary schedules. We show that this method is substan-
tially faster than existing dynamic race detectors for unman-
aged code. To help programs survive bugs in production,
Frost also diagnoses the data race bug and selects an ap-
propriate recovery strategy, such as choosing a replica that
is likely to be correct or executing more replicas to gather
additional information.

Frost controls the thread schedules of replicas by running
all threads of a replica non-preemptively on a single core.
To scale the program to multiple cores, Frost runs a third
replica in parallel to generate checkpoints of the program’s
likely future states — these checkpoints let Frost divide pro-
gram execution into multiple epochs, which it then runs in
parallel.

We evaluate Frost using 11 real data race bugs in desktop
and server applications. Frost both detects and survives all
of these data races. Since Frost runs three replicas, its uti-
lization cost is 3x. However, if there are spare cores to absorb
this increased utilization, Frost adds only 3–12% overhead
to application runtime.

1Our system is named after the author of the poem “The
Road Not Taken”. Like the character in the poem, our sec-
ond replica deliberately chooses the schedule not taken by
the first replica.
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1. INTRODUCTION
The prevalence of multicore processors has encouraged the
use of multithreaded software in a wide range of domains, in-
cluding scientific computing, network servers, desktop appli-
cations, and mobile devices. Unfortunately, multithreaded
software is vulnerable to bugs due to data races, in which
two instructions in different threads (at least one of which
is a write) access the same memory location without being
ordered by synchronization operations. Many concurrency
bugs are due to data races. These bugs are difficult to find in
development and can cause crashes or other program errors
at runtime. Failures due to races can be catastrophic, as
shown by the 2003 Northeastern United States power black-
out [33] and radiation overdoses from the Therac-25 [25].

Researchers have proposed various solutions that attempt
to eliminate or identify data races in the development pro-
cess, including disciplined languages [5, 7], static race anal-
ysis [13], and dynamic race analysis [15, 40, 42]. Despite
these attempts, data races continue to plague production
code and are a major source of crashes, incorrect execution,
and computer intrusions.

To help address the problem of data race bugs, we pro-
pose running multiple replicas of a program and forcing two
of these replicas to follow complementary schedules. Our
goal in using complementary schedules is to force replicas
to diverge if and only if there is a potentially harmful data
race. We do this by exploiting a sweet spot in the space of
possible thread schedules. First, we ensure that all replicas
see identical inputs and use thread schedules that obey the
same program ordering constraints imposed by synchroniza-
tion events and system calls. This guarantees that replicas
that do not execute a pair of racing instructions will not
diverge [37]. Second, while obeying the previous constraint,
we attempt to make the thread schedules executed by the
two replicas as dissimilar as possible. Specifically, we try to
maximize the probability that any two instructions executed
by different threads and not ordered by a synchronization
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operation or system call are executed in opposite orders by
the replicas. For all harmful data races we have studied in
actual applications, this strategy causes replica divergence.

Our system, called Frost, uses complementary schedules to
achieve two goals: detecting data races at low overhead and
increasing availability by masking the effects of harmful data
races at runtime. Frost introduces a new method to detect
races: outcome-based data-race detection. While traditional
methods detect races by analyzing the events executed by a
program, outcome-based race detection detects the effects of
a data race by comparing the states of different replicas ex-
ecuted with complementary schedules. Outcome-based race
detection achieves lower overhead than traditional dynamic
data race detectors, but it can fail to detect some races,
e.g., data races that require a preemption to cause a failure
and that generate identical correct outcomes using multiple
non-preemptive schedules (See Section 3.4 for a full discus-
sion). However, in our evaluation of real programs, Frost
detects all potentially harmful data races detected by a tra-
ditional data race detector. While prior work [31] compared
the outcomes of multiple orderings of instructions for known

data races in order to classify those races as either benign
or potentially malign, Frost is the first system to construct
multiple schedules to detect and survive unknown data races.
Frost thus faces the additional challenge of constructing use-
ful schedules without first knowing which instructions race.
A benefit that Frost inherits from the prior classification
work is that it automatically filters out most benign races
that are reported by a traditional dynamic race detector.

For production systems, Frost moves beyond detection to
also diagnose and survive harmful data races. Since a con-
currency bug due to a data race manifests only under a
specific order of racing memory accesses, executing comple-
mentary schedules makes it extremely likely that one of the
replicas survives the ill effects of a data race. Thus, once
Frost detects a data race, it analyzes the outcomes of the
various replicas and chooses a strategy that is likely to mask
the failure, such as identifying and resuming execution from
the correct replica or creating additional replicas to help
identify a correct replica.

To generate complementary thread schedules, Frost must
control tightly the execution of each replica. To do this,
Frost timeslices the threads of a replica onto a single pro-
cessor and switches between threads only at synchroniza-
tion points (i.e., it uses non-preemptive scheduling). Run-
ning threads on a single processor without preemptions has
another benefit: it prevents bugs that require preemptions
(e.g., atomicity violations) from manifesting, thereby in-
creasing availability. Because running all threads on a single
processor prevents a replica from scaling to take advantage
of multiple cores, Frost uses uniparallelism [44] to parallelize
a uniprocessor execution by running multiple epochs (time
intervals) of that execution on separate cores simultaneously.

Frost helps address the problem of data races in several
scenarios. During testing, it can serve as a fast dynamic
data race detector that also classifies races as benign or
potentially harmful in the observed execution. For a beta
or production system with active users, both detection and
availability are important goals. Frost masks many data
race failures while providing developers with reports of data
races that could lead to potential failures.

This paper makes the following contributions. First, it
proposes the idea of complementary schedules, which guar-

antees that replicas do not diverge in the absence of data
races and makes it very likely that replicas do diverge in the
presence of harmful data races. Second, it shows a practical
and low-latency way to run two replicas with complemen-
tary thread schedules by using a third replica to accelerate
the execution of the two complementary replicas. Third, it
shows how to analyze the outcomes of the three replicas to
craft a strategy for surviving data races. Fourth, it intro-
duces a new way to detect data races that has lower overhead
than traditional dynamic data race detectors.

We evaluate the effectiveness of complementary thread
schedules on 11 real data race bugs in desktop and server
applications. Frost detects and survives all these bugs in
every trial. Frost’s overhead is at worst 3x utilization to run
three replicas, but it has only 3–12% overhead if there are
sufficient cores or idle CPU cycles to run all replicas.

2. COMPLEMENTARY SCHEDULES
The key idea in Frost is to execute two replicas with com-
plementary schedules in order to detect and survive data
race bugs. A data race is comprised of two instructions (at
least one of which is a write) that access the same data, such
that the application’s synchronization constraints allow the
instructions to execute in either order. For harmful data
races, one of those orders leads to a program error (if both
orders lead to an error, then the root cause of the error is not
the lack of synchronization). We say that the order of two
instructions that leads to an error is a failure requirement.
A data race bug may involve multiple failure requirements,
all of which must be met for the program to fail.

As an example, consider the simple bug in Figure 1(a). If
thread 1 sets fifo to NULL before thread 2 dereferences the
pointer, the program fails. If thread 2 accesses the pointer
first, the program executes correctly. The arrow in the figure
shows the failure requirement. Figure 1(b) shows a slightly
more complex atomicity violation. This bug has two failure
requirements; i.e., both data races must execute in a certain
order for the failure to occur.

To explain the principles underlying the idea of comple-
mentary schedules, we first consider an interval of execu-
tion in which at most one data race bug occurs and which
contains no synchronization operations that induce an or-
dering constraint on the instructions (we call such an inter-
val synchronization-free). For such regions, complementary
schedules provide hard guarantees for data race detection
and survival. We discuss these guarantees in this section.
However, real programs do not consist solely of such regions,
so in Section 3.4 we discuss how generalizing the range of
scenarios affects Frost’s guarantees.

The goal of executing two replicas with complementary
schedules is to ensure that one replica avoids the data race
bug. We say that two replicas have perfectly complemen-
tary schedules if and only if, for every pair of instructions a

and b executed by different threads that are not ordered by
application synchronization, one replica executes a before b,
and the other executes b before a.

Since a failure requirement orders two such instructions,
use of perfectly complementary schedules guarantees that for
any failure requirement, one replica will execute a schedule
that fulfills the requirement and one will execute a schedule
that does not. This guarantees that one of the two replicas
does not experience the failure.

Eliminating preemptions is essential to achieving perfectly
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Thread 1

void main() {                 void *consumer (void *q) {

    ...                                     ...

    fifo = NULL;

                                            pthread_mutex_unlock (fifo->mut);

    ...                                     ...

}                                        }

(a) Type Ι bug

Thread 2 Thread 1

void  innobase_mysql_print_thd(...) {                bool do_command (...) {

      if (thd->proc_info) {                                                   ...

              ... 

                                                                                               thd->proc_info = 0;

             fputs (thd->proc_info, f );                                  ...

      }                                                          

}                                                                                      }

(b) MySQL #3596:  Type ΙΙ bug

Thread 2

Figure 1: Data race examples

complementary schedules. To understand why this is so,
consider a canonical schedule with a preemption: thread A
executes an instruction a0, then thread B preempts thread A
and executes an instruction b0, then thread A resumes and
executes a1. It is impossible to generate a perfectly com-
plementary schedule for this schedule. In such a schedule,
a1 would precede b0, and b0 would precede a0. However,
this would require a1 to precede a0, which would violate the
sequential order of executing instructions within a thread.

In contrast, without preemptions, constructing a per-
fectly complementary schedule for two threads in a
synchronization-free interval is trivial—one schedule simply
executes all of thread A’s instructions before thread B’s in-
structions; the other schedule executes all of thread B’s in-
structions before thread A’s instructions. For more than
two threads, one schedule executes the threads in some or-
der, and the other executes the threads in the reverse order.

Thus, to guarantee that at least one replica avoids a
particular data race bug in a synchronization-free interval,
we execute two replicas, use non-preemptive scheduling for
these replicas, and reverse the scheduling order of thread
execution between the two replicas.

The above algorithm provides even stronger properties for
some common classes of data race bugs. For instance, con-
sider the atomicity violation in Figure 1(b). Because the
failure requirements point in opposite directions, each of the
two replica schedules will fulfill one constraint but not the
other. Since failure requires that both requirements be ful-
filled, the proposed algorithm guarantees that both replicas
avoid this failure.

In general, given n threads, we must choose an arbitrary
order of those threads for one schedule and reverse that or-
der in the complementary schedule. Visualizing the threads
arrayed according to the order chosen, if all failure require-
ments point in the same direction, then the proposed algo-
rithm guarantees that one replica avoids the failure. In the
rest of the paper, we will refer to bugs in this category as
Type I. If any two failure requirements point in the oppo-
site direction, the proposed algorithm provides the stronger
guarantee that both replicas avoid the failure. We will refer
to bugs in this category as Type II.

3. DESIGN AND IMPLEMENTATION
Frost uses complementary schedules to detect and survive
data races. This section describes several challenges, in-
cluding approximating the ideal behavior for intervals of ex-

ecution with synchronization operations and multiple bugs,
scaling performance via multicore execution, and imple-
menting heuristics for identifying correct and faulty replicas.
It concludes with a discussion of specific scenarios in which
Frost can fail to detect or survive races and the steps Frost
takes to minimize the effect of those scenarios.

3.1 Constructing complementary schedules
Frost divides program execution into time-slices called
epochs. For each epoch, it runs multiple replicas and controls
the thread schedule of each to achieve certain properties.

The first property that Frost enforces is that each replica
follows the same partial order of system calls and synchro-
nization operations. In other words, certain pairs of events
such as lock and unlock on a mutex lock, signal and wait

on a condition variable, or read and write on a pipe repre-
sent a happens-before order of events in the two threads; e.g.,
events following the lock in one thread cannot occur until
after the other thread calls unlock. By ensuring that all
threads have the same happens-before order of such events,
Frost guarantees that two replicas can diverge in output or
final memory and register state only if a data race occurs
within the epoch [37]. Further, all replicas will encounter
the same pair of racing instructions.

The second property that Frost tries to achieve is that two
replicas have thread schedules that are as complementary as
possible, given that the first property has to be upheld. As
discussed in Section 2, this property is intended to ensure
that at least one of the two replicas with complementary
thread schedules does not fail due to a particular data race.

Frost must execute a replica to observe the happens-before
order of synchronization operations and system calls before
it can enforce an identical order over the same operations in
other replicas. Frost observes this order by using a modi-
fied glibc and Linux kernel that maintain a vector clock for
each thread and for synchronization entities such as locks
and condition variables. Each value in the vector represents
a thread’s virtual time. Synchronization events and system
calls increment the calling thread’s value in its local vector
clock. Operations such as unlock set the vector clock of the
lock to the maximum of its previous value and the vector
clock of the unlocking thread. Operations such as lock set
the vector clock of the locking thread to the maximum of its
previous value and the vector clock of the lock. Similarly, we
modified kernel entities to contain vector clocks and propa-
gate this information on relevant system calls. For instance,
since system calls such as map and munmap do not commute,
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Frost associates a vector clock with the address space of the
process to enforce a total order over address-space-modifying
system calls such as mmap.

When the first replica executes, Frost logs the vector
clocks of all system calls and synchronizations in a log.
Other replicas read the logged values and use them to fol-
low the same happens-before order. Each replica maintains
a replay vector clock that is updated when a thread performs
a synchronization operation or system call. A thread may
not proceed with its next operation until the replay vector
clock equals or exceeds the value logged for the operation by
the first replica. This ensures, for example, that one thread
does not return from lock until after another thread calls
unlock if there was a happens-before order between the two
operations in the original replica. More than one replica
can execute an epoch concurrently; however, all other repli-
cas typically are slightly behind the first replica since they
cannot execute a synchronization operation or system call
until the same operation is completed by the first replica.

Given a happens-before order, Frost uses the following al-
gorithm to construct schedules for two replicas that comple-
ment each other as much as possible without modifying the
application. Frost chooses an order over all threads within
a replica and assigns the reverse order to those threads in
a second replica. For example, if three threads are ordered
[A, B, C] in one replica, they are ordered [C, B, A] in the
other. Frost executes all threads within each replica on a
single core so that two threads do not run simultaneously.
A thread is eligible to run as long as it is not waiting to
satisfy a happens-before constraint and it has not yet com-
pleted the current epoch. The Frost kernel always runs the
eligible thread that occurs first in its replica’s scheduling or-
der. A thread runs until it reaches the end of the epoch, it
blocks to enforce a happens-before constraint, or a thread
earlier in the replica’s scheduling order becomes eligible to
run.

3.2 Scaling via uniparallelism
As described so far, the use of complementary schedules does
not allow a program to scale to use multiple cores because all
threads of a replica must run sequentially on a single core. If
multiple threads from a replica were to concurrently execute
two instructions on different cores, those two instructions
cannot be ordered by a happens-before constraint and are
thus potentially racing. In this case, the two replicas should
execute these instructions in different orders. However, de-
termining the order of these instructions and enforcing the
opposite order on the other replica implies that the instruc-
tions execute sequentially, not concurrently.

Frost uses uniparallelism [44] to achieve scalability. Uni-
parallelism is based on the observation that there exists at
least two methods to scale a multithreaded program to run
on multiple cores. The first method, termed thread paral-

lelism, runs multiple threads on different cores — this is the
traditional method for exploiting parallelism. The second
method, termed epoch parallelism, runs multiple time-slices
of the application concurrently.

Uniparallel execution runs a thread-parallel and one or
more epoch-parallel executions of a program concurrently. It
further constrains each epoch-parallel execution so that all
its threads execute on a single core. This strategy allows the
epoch-parallel execution to take advantage of the properties
that come with running on a uniprocessor. Our original use
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Figure 2: Frost: Overview

of uniparallelism in a system called DoublePlay provided ef-
ficient software-only deterministic replay [44]. Frost is built
on a modified version of the DoublePlay infrastructure, but
it uses uniparallelism for a different purpose, namely the ex-
ecution of replicas with complementary schedules and iden-
tical happens-before constraints.

As shown in Figure 2, to run epochs in parallel, a uni-
parallel execution generates checkpoints from which to start
each epoch. It must generate these checkpoints early enough
to start future epochs before prior ones finish. Thus, the
thread-parallel execution runs ahead of the epoch-parallel
execution and generates checkpoints from which to start
future epochs. Multiple epochs execute in parallel, in a
manner similar to a processor pipeline — this allows an
epoch-parallel execution to scale with the number of avail-
able cores.

In summary, Frost executes three replicas for each epoch:
a thread-parallel replica that is used to record the happens-
before constraints for the epoch and generate checkpoints
to speculatively parallelize the other two replicas, and
two epoch-parallel replicas with complementary schedules.
Replicas use copy-on-write sharing to reduce overall memory
usage. Frost uses online deterministic replay [24] to ensure
that all replicas receive the same non-deterministic input
and to enforce the same happens-before constraints in all
replicas. It logs the result of all system calls and synchro-
nization operations as the thread-parallel replica executes.
When the epoch-parallel replicas later execute the same op-
erations, Frost’s modified kernel and glibc library do not
re-execute the operations but rather return the logged val-
ues. Signals are also logged during the thread-parallel exe-
cution and delivered at the same point in the epoch-parallel
executions. Because Frost logs and replays all forms of non-
determinism except data races, only data races can cause
replicas to diverge. Online replay has an additional perfor-
mance benefit — the epoch-parallel executions do not block
on I/O since the results have already been obtained by the
thread-parallel execution.

When replicas diverge during an epoch, Frost chooses one
of several actions. First, it may decide to accept the re-
sults of one of the replica executions, which we refer to as
committing that replica. If it chooses to commit the thread-
parallel replica, it simply discards the checkpoint taken at
the beginning of the epoch. If it chooses to commit an epoch-
parallel replica, and the memory and register state of that
replica is different from that of the thread-parallel replica,
then subsequent epochs in the pipeline are invalid. Effec-
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tively, the checkpoint from which the execution of the next
epoch began was an incorrect hint about the future state
of the application. Frost first discards the checkpoint taken
at the beginning of the committed epoch. Then, it quashes
all epochs subsequent to the one just committed and begins
anew with fresh thread-parallel and epoch-parallel replicas
using the state of the committed replica.

Frost may also choose to execute additional replicas to
learn more about the epoch that led to the divergence. It
starts additional thread-parallel and/or epoch-parallel exe-
cutions from the checkpoint taken at the beginning of the
epoch that led to the divergence — we refer to this process
as rolling back the epoch. Frost could later decide to commit
one of the original replicas or one of the new ones, though
currently only new replicas are ever committed.

Since replicas may produce different output, Frost does
not externalize any output until it decides which replica
to commit. It uses speculative execution (implemented via
Speculator [32]) to defer the output. This leads to a trade-
off among correctness, overhead, and output latency when
choosing how long an epoch should last. Longer epochs offer
better correctness properties, as discussed in Section 3.4.3,
and also lower overhead. Shorter epochs yield lower latency
for output. Frost balances these constraints by using an
adaptive epoch length. For CPU-bound applications that
issue no external output, epoch length grows up to one sec-
ond. However, when the application executes a system call
that produces external output, Frost immediately starts to
create a new epoch. Thus, server applications we have evalu-
ated often see the creation of hundreds of epochs per second.
Additionally, as will be discussed in Section 3.3.1, the epoch
length is varied depending on the number of data races ob-
served during execution — epochs without a data race grad-
ually increase the epoch length (by 50ms at a time), while
epochs with a data race decrease the epoch length (by up
to a factor of 20). After Frost decides to start an epoch, it
waits for all threads to reach a system call or synchroniza-
tion operation. It then checkpoints the process and allows
threads to proceed.

3.3 Analyzing epoch outcomes
After all three replicas finish executing an epoch, the Frost
kernel compares their executions to detect and survive data
races. Since the Frost control code and data are in the ker-
nel, the following logic cannot be corrupted by application-
level bugs.

First, Frost determines if a replica has crashed or entered
an infinite loop. We call this a self-evident failure because
Frost can declare such a replica to have failed without con-
sidering the results of other replicas. Frost detects if a replica
crashes or aborts by interposing on kernel signal-handling
routines. It detects if a replica has entered an infinite loop
via a timeout-based heuristic (we have not yet had the need
to implement more sophisticated detection).

Other classes of failures are not self-evident; e.g., a replica
may produce incorrect output or internal state. One way to
detect this type of failure is to require a detailed specification
of the correct output. Yet, for complex programs such as
databases and Web servers, composing such a specification
is quite daunting. Addressing this challenge in practice re-
quires a method of detecting incorrect output that does not
rely on program semantics or hand-crafted specifications.

Frost infers the potential presence of failures that are not

self-evident by comparing the output and program state of
the three replicas. During execution, Frost compares the
sequence and arguments of the system calls produced by
each replica. Frost also compares the memory and register
state of all replicas at the end of epoch execution. To reduce
the performance impact of comparing memory state, Frost
only compares pages dirtied or newly allocated during the
epoch. Frost declares two replicas to have different outcomes
if either their output during the epoch or their final states
at the end of the epoch differ.

To detect and survive data races, Frost must infer whether
a data race has occurred and which replica(s) failed. Frost
first considers whether each replica has experienced a self-
evident failure. If the replica has not experienced a self-
evident failure, Frost considers the memory and register
state of the replica at the end of an epoch, and the out-
put produced by the replica during that epoch.

There are 11 combinations of results among the three
replicas, which are shown in the left column of Table 1. The
result of each replica is denoted by a letter: F means the
replica experienced a self-evident failure; A-C refer to a par-
ticular value for the final state and output produced by the
replica for the epoch. We use the same letter, A, B, or C,
for replicas that produced the same state and output. To
simplify the explanation, we do not distinguish between dif-
ferent types of failures in this exposition. The first letter
shows the result of the thread-parallel execution; the next
two letters show the outcomes of the epoch-parallel execu-
tions. For example, the combination F-AA indicates that the
thread-parallel execution experienced a self-evident failure,
but the two epoch-parallel executions did not experience a
self-evident failure and produced the same state and output.

As an aside, two replicas may produce the same output
and reach the same final state, yet take different execution
paths during the epoch due to a data race. Due to Frost’s
complementary scheduling algorithm, it is highly likely that
the data race was benign, meaning that both replicas are
correct. Allowing minor divergences during an epoch is thus
a useful optimization for filtering out benign races. Frost
lets an epoch-parallel replica execute a different system call
(if the call does not have side effects) or a different synchro-
nization operation when it can supply a reasonable result
for the operation. For instance, it allows an epoch-parallel
replica to perform a nanosleep or a getpid system call not
performed by the thread-parallel replica. It also allows self-
canceling pairs of operations such as a lock followed by an
unlock. While further optimizations are possible, the total
number of benign races currently filtered through such opti-
mizations is relatively small. Thus, adding more optimiza-
tions may not be worth the implementation effort. Conse-
quently, when a divergence cannot be handled through any
of the above optimizations, Frost declares the two replicas
to have different output.

3.3.1 Using the epoch outcome for survival
Frost diagnoses results by applying Occam’s razor: it
chooses the simplest explanation that could produce the ob-
served results. Specifically, Frost chooses the explanation
that requires the fewest data race bugs in an epoch. Among
explanations with the same number of bugs, Frost chooses
the explanation with the fewest failure requirements. The
middle column in Table 1 shows the explanation that Frost
associates with each combination of results, and the right
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Epoch Likely Survival
Results Bug Strategy
A-AA None Commit A
F-FF Non-Race Bug Rollback

A-AB/A-BA Type I Rollback
A-AF/A-FA Type I Commit A
F-FA/F-AF Type I Commit A

A-BB Type II Commit B
A-BC Type II Commit B or C
F-AA Type II Commit A
F-AB Type II Commit A or B

A-BF/A-FB Multiple Rollback
A-FF Multiple Rollback

The left column shows the possible combinations of results for
three replicas; the first letter denotes the result of the thread-
parallel run, and the other two letters denote the results of the
epoch-parallel replicas. F denotes a self-evident failure; A, B,
or C denote the result of a replica with no self-evident failure.
We use the same letter when replicas produce identical output
and state.

Table 1: A taxonomy of epoch outcomes

column shows the action that Frost takes based on that ex-
planation.

The simplest possible explanation is that the epoch was
free of data race bugs. Because all replicas obey the same
happens-before constraints, an epoch that is free of data
races must produce the same results in all replicas, so this
explanation can apply only to the combinations A-AA and
F-FF. For A-AA epochs, Frost concludes that the epoch ex-
ecuted correctly on all replicas and commits it. For F-FF

epochs, Frost concludes that the epoch failed on all replicas
due to a non-race bug. In this case, Frost rolls back and re-
tries execution from the beginning of the epoch in the hope
that the failure is non-deterministic and might be avoided
in a different execution, e.g., due to different happens-before
constraints.

The next simplest explanation is that the epoch experi-
enced a single Type I data race bug. A single Type I bug
can produce at most two different outcomes (one for each
order of the racing instructions) and the outcome of the two
epoch-parallel executions should differ because they execute
the racing instructions in different order. For a Type I bug,
one of these orders will not meet the failure requirement and
will thereby work correctly. The other order will meet the
failure requirement and may lead to a self-evident failure,
incorrect state, or incorrect output. The following combi-
nations have two different outcomes among the two epoch-
parallel replicas (one of which is correct) and at most two
outcomes among all three replicas: A-AB (and the isomor-
phic A-BA), A-AF (and the isomorphic A-FA), and F-AF (and
the isomorphic F-FA).

For epochs that result in A-AF and F-AF, a replica that
does not experience the self-evident failure is likely correct,
so Frost commits that replica. For epochs that produce A-

AB, it is unclear which replica is correct (or if both are correct
due to a benign race), so Frost gathers additional informa-
tion by executing an additional set of three replicas start-
ing from the checkpoint at the beginning of the epoch. In
this manner, Frost first tries to find a execution in which a
happens-before constraint prevents the race from occurring;

our hypothesis is that for a reasonably well-tested program,
such an execution is likely to be correct. For the data races
we have tested so far, Frost typically encounters such a con-
straint after one or two rollbacks. This results in a differ-
ent combination of results (e.g., A-AA, in which case Frost
can commit the epoch and proceed). If Frost encounters the
same data race on every execution, we plan to use the heuris-
tic that most natural executions are likely to be correct and
have Frost choose the thread-parallel execution that occurs
most often in such executions. Note that because epoch-
parallel executions use artificially-perturbed schedules, they
should not be given much weight; for this reason, we would
not consider an A-BA to be two votes for A and one vote for
B, but rather would consider it to be a single vote for A.

If a combination of results cannot be explained by a sin-
gle Type I bug, the next simplest explanation is a single
Type II bug. A Type II bug can produce the following com-
bination of results: A-BB, A-BC, F-AA, and F-AB. None of
these should be produced by a single Type I bug because the
epoch-parallel replicas generate the same answer (A-BB or F-
AA) or because there are three outcomes (A-BC or F-AB). In
the latter case, it is impossible for the outcome to have been
produced by a single Type I bug, whereas in the first case,
the outcome is merely unlikely. Any epoch-parallel execu-
tion should avoid a Type II bug because its non-preemptive
execution invalidates one of the bug’s failure requirements.
For instance, atomicity violation bugs are Type II bugs that
are triggered when one thread interposes between two events
in another thread. Because threads are not preempted in the
epoch-parallel replicas, both replicas avoid such bugs.

We have found that it is common for a single type II bug
to result in three different outcomes (e.g., A-BC or F-AB).
For example, consider two threads both logging outputs in
an unsynchronized manner. The thread-parallel replica in-
correctly garbles the outputs by mixing them together (out-
come A), one epoch-parallel replica correctly outputs the first
value in its entirety before the second (outcome B), and the
remaining epoch-parallel replica outputs the second value
in its entirety before the first (outcome C), which is also
correct. Similar situations arise when inserting or remov-
ing elements from an unsynchronized shared data structure.
Thus, when Frost sees an A-BC outcome, it commits one of
the epoch-parallel replicas.

The remaining combinations (A-BF, the isomorphic A-FB,
and A-FF) cannot be explained by a single data race bug.
A-BF has more than two outcomes, which rules out a single
Type I bug. A-BF also includes a failing epoch-parallel run,
which rules out a single Type II bug. Both epoch-parallel
replicas fail in A-FF, and this is also not possible from a single
Type I or Type II bug. We conclude that these combinations
are caused by multiple data race bugs in a single epoch.
Frost rolls back to the checkpoint at the beginning of the
epoch and executes with a shorter epoch length (trying to
encounter only one bug at a time during re-execution).

3.3.2 Using the epoch outcome for race detection
Using epoch outcomes for data race detection is more
straightforward than using those outcomes to survive races.
Any outcome that shows a divergence in system calls exe-
cuted (which includes all external output), synchronization
operations executed, or final state at the end of the epoch
indicates that a data race occurred during the epoch. Be-
cause all three replicas obey the same happens-before order,

374



a data race is the only cause of replica divergence. Fur-
ther, that data race must have occurred during the epoch
being checked because all replicas start from the same initial
memory and register state.

Because Frost’s data race detection is outcome-based, not
all data races that occur during the epoch will be reported.
This is a useful way to filter out benign races, which are
sometimes intentionally inserted by programmers to improve
performance. In particular, an ad-hoc synchronization may
never cause a memory or output divergence, or a race may
lead to a temporary divergence, such as in values in the stack
that are soon overwritten. If Frost explores both orders for
a pair of racing instructions and does not report a race,
then the race is almost certainly benign, at least in this
execution of the program. The only exception, discussed in
Section 3.4.4, occurs when multiple bugs produce identical-
but-incorrect program state or output.

Since Frost allows replicas to diverge slightly during an
epoch, it sometimes observes a difference between replicas
in system calls or synchronization operations executed, but
it does not observe a difference in output or final replica
state. Such races are also benign. Frost reports the pres-
ence of such races but adds an annotation that the race had
no observable effect on program behavior. A developer can
choose whether or not to deal with such races.

Because Frost is implemented on top of the DoublePlay
framework for deterministic record and replay, it inherits
DoublePlay’s ability to reproduce any execution of an epoch-
parallel replica [44]. Thus, in addition to reporting the ex-
istence of each race, Frost also can reproduce on demand
an entire execution of the program that leads to each re-
ported race, allowing a developer to employ his or her fa-
vorite debugging tools. For instance, we have implemented a
traditional dynamic data race detector based on the design
of DJIT+ [34] that replays a divergent epoch to precisely
identify the set of racing instructions.

3.3.3 Sampling
Some recent race detection tools use sampling to reduce
overhead at the cost of missing some data races [6, 14, 29].
We added a similar option to Frost. When the user specifies
a target sampling rate, Frost creates epoch-parallel replicas
for only some epochs; we call these the sampled epochs. Frost
does not execute epoch-parallel replicas for other epochs,
meaning that it neither detects nor survives races during
those epochs. Frost dynamically chooses which epochs are
sampled such that the ratio of the execution time of the sam-
pled epochs to the overall execution time of the program is
equal to the sampling rate. While it is possible to use more
sophisticated heuristics to choose which epochs to sample,
this strategy has the property that the relative decrease in
Frost’s ability to survive and detect dynamic data races will
be roughly proportional to the sampling rate.

3.4 Limitations
Section 2 discussed the guarantees that complementary
scheduling provides for data race survival and detection in
synchronization-free code regions that contain no more than
one data race. We now describe the limitations on these
guarantees for epochs that do not conform to those proper-
ties. We also describe the steps that Frost takes to mitigate
these limitations. As the results in Section 4.1.2 show, these
limitations did not compromise Frost’s survival or detection

properties in practice when we evaluated Frost with real ap-
plication bugs.

3.4.1 Multiple bugs in an epoch
Although we posit that data race bugs are rare, an epoch
could contain more than one bug. If multiple bugs occur in
one epoch, Frost’s diagnosis might explain the epoch out-
come but be incorrect for that execution. This would affect
both survival and detection guarantees.

Survival requires that at least one replica execute cor-
rectly. Adding any number of Type II bugs to an epoch
does not affect survival since neither epoch-parallel replica
will fail due to such bugs. Thus, one replica will be correct
for a synchronization-free region that contains zero or one
Type I bugs and any number of Type II bugs. However, the
presence of multiple Type I bugs can cause both replicas to
fail. Typically, different bugs will cause the program to fail
in different ways. The symptom of failure (e.g., crash or
abort) might be different, or the memory and register state
may be different at the time of failure. Thus, Frost can still
take corrective action such as rolling back and executing ad-
ditional replicas, especially if such failures are self-evident.
When Frost rolls back, it substantially reduces the epoch
length to separate out different bugs during re-execution.
This is a form of search.

It is conceivable, though unlikely, that two different Type
I bugs have the same effect on program state, in which case
the replicas with complementary schedules could reach the
same final state. If the failure is not self-evident, Frost will
mis-classify the epoch and commit faulty state.

For the purpose of data race detection, multiple data races
are only a problem if all races have an identical effect on
program state. Otherwise, replicas will diverge and Frost
will report a race for the epoch. The presence of multiple
data races will subsequently be discovered by the developer
when replaying the epoch in question.

3.4.2 Priority inversion
The presence of happens-before constraints within an epoch
may cause Frost to fail to survive or detect a data race within
that epoch. For epochs in which only pairs of threads inter-
act with one another, Frost’s algorithm for complementary
schedule generation will construct schedules in which the or-
der of all potentially racing instructions differ. Non-racing
instructions may execute in the same order, but, by defini-
tion, this does not affect any guarantees about data races.

When more than two threads interact in an epoch, a situa-
tion similar to priority inversion may arise and prevent Frost
from constructing schedules that change the order of all non-
racing instructions. For instance, consider Figure 3. The
epoch contains three threads, a happens-before constraint
due to application synchronization, and a failure require-
ment caused by two racing instructions. If Frost’s assigns
the order ABC to threads in one replica, the serial order of
execution in the two schedules is { a0, b, c0, a1, c1 } in one
replica and { c0, c1, b, a0, a1 } in the other. All pairs of
code segments that occur in different threads execute in a
different order in the two schedules, with two exceptions. c0

executes before a1 in both schedules. However, this order is
required by application synchronization, and that synchro-
nization prevents these instructions from racing. Addition-
ally, b executes before a1 in both schedules. If the Type I
bug shown in the figure occurs, then both replicas will fail.
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Thread BT0Thread A

unlock (l);

x = NULL;

Thread C

lock (l);

printf (”%c”, *x);

Failure requirementHappens-before

a0

a1

c0

c1b

Figure 3: Priority inversion scenario

This may prevent Frost from surviving or detecting the race
if the failure does not occur in the thread-parallel execution
and is not self-evident.

Note that Frost could have guaranteed both survival and
detection by choosing another set of priorities for the three
threads, such as BAC. Based on this observation, we have
implemented a heuristic that helps choose thread priorities
that avoid priority inversion. As a program executes, Frost
counts the number of happens-before constraints between
each pair of threads. It uses a greedy algorithm to place
the two threads with the most frequent constraints in adja-
cent slots in the priority order, then place the thread with
the most frequent constraints with one of those two threads
adjacent to the thread with which it shares the most con-
straints, and so on. Since priority inversion can happen only
when a constraint occurs between two non-adjacent threads
in the priority order, this heuristic reduces the possibility
of priority inversion happening as long as the constraints
seen earlier in a program are a good predictor of future con-
straints.

In some cases, the thread-parallel execution of an epoch
may complete before the epoch-parallel executions begin. In
such cases, Frost can observe the exact set of happens-before
constraints during that epoch and choose thread priorities
accordingly. We have not yet implemented this further op-
timization.

3.4.3 Epoch boundaries
Frost separates execution into epochs to achieve scalability
via multicore execution. Each epoch represents an ordering
constraint (a barrier) that was not present in the original
program. If a failure requirement crosses an epoch barrier
(i.e., one of the instructions occurs in a prior epoch and
one occurs in a subsequent epoch), the order of these two
instructions is fixed in all replicas. For a Type I bug, all
replicas will fail together or all will avoid failure.

Frost takes two steps to mitigate this limitation. First,
it creates epochs infrequently. Second, it creates an epoch
such that all threads are executing a system call at the point
the epoch is created. For a data race such as the atomicity
violation in Figure 1(b), this guarantees that no replica will
fail unless the program issues a system call in the region that
must be atomic.

All systems (including Frost) that are used to survive
harmful races must commit state before externalizing out-
put, and externalizing output is often required for forward
progress. To avoid a bug due to a harmful race, such sys-
tems must also roll back to some committed state that pre-

cedes the race. This committed state may artificially order
instructions before and after the commit point, and this or-
dering constraint may force the program to experience a
harmful ordering of racing instructions [26].

When Frost is used only to detect races and not to survive
them (e.g., during testing), there may be no need to keep the
external output consistent after a data race occurs. Thus,
we have implemented an optimization when Frost is used for
data race detection in which external output does not cause
the creation of a new epoch. This optimization is used only
in Section 4.2 and not elsewhere in the evaluation.

3.4.4 Detection of Type II bugs
Frost’s outcome-based race detection may not detect certain
Type II bugs. Detection requires that any two replicas dif-
fer in system calls or synchronization operations executed,
or that two replicas have a different memory or register state
at the end of the epoch. As previously mentioned, certain
benign races may have this property — filtering out such
races is an advantage of outcome-based race detection. In
addition, a code region may exhibit this property if the ef-
fects of two or more sets of racing instructions are identical.
This is most likely to happen for a Type II bug in which
both epoch-parallel replicas are correct and finish the epoch
in identical states. However, in our experience so far with
actual programs, Type II bugs have always led to some dif-
ference in program state or output.

4. EVALUATION
Our evaluation answers the following questions:

• How effectively does Frost survive data race bugs?

• How effectively does Frost detect such bugs?

• What is Frost’s overhead?

4.1 Detecting and surviving races

4.1.1 Methodology
We evaluated Frost’s ability to survive and detect data races
using a 8-core server with two 2.66 GHz quad-core Xeon pro-
cessors and 4GB of DRAM. The server ran CentOS Linux
5.3, with a Linux 2.6.26 kernel and GNU library version
2.5.1, both modified to support Frost.

We used 11 actual concurrency bugs in our evaluation.
We started by reproducing all data race bugs from an online
collection of concurrency bugs [50] in Apache, MySQL, and
pbzip2 compiled form several academic sources [27, 49, 51]
and BugZilla databases. Out of the 12 concurrency bugs in
the collection, we reproduced all 9 data race bugs. In addi-
tion, we reproduced a data race bug in the application pfscan
that has been previously used in academic literature [51]. Fi-
nally, during our tests, Frost detected a previously unknown,
potentially malign data race in glibc, which we added to our
test suite. Table 2 lists the bugs and describes their effects.

For each bug, we ran 5 trials in which the bug manifests
while the application executes under Frost’s shepherding.
The fourth column in Table 2 shows the replica outcomes
for the epoch containing the bug. The fifth column shows
the percentage of trials in which Frost survives the bug by
producing output equivalent to a failure-free execution. The
next column shows the percentage of trials in which Frost de-
tects the bug via divergence in replica output or state. The
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Application Bug number Bug manifestation Outcome % survived % detected Recovery time (sec)
pbzip2 N/A crash F-AA 100% 100% 0.01 (0.00)

apache 21287 double free A-BB or A-AB 100% 100% 0.00 (0.00)

apache 25520 corrupted output A-BC 100% 100% 0.00 (0.00)

apache 45605 assertion A-AB 100% 100% 0.00 (0.00)

MySQL 644 crash A-BC 100% 100% 0.02 (0.01)
MySQL 791 missing output A-BC 100% 100% 0.00 (0.00)

MySQL 2011 corrupted output A-BC 100% 100% 0.22 (0.09)

MySQL 3596 crash F-BC 100% 100% 0.00 (0.00)

MySQL 12848 crash F-FA 100% 100% 0.29 (0.13)

pfscan N/A infinite loop F-FA 100% 100% 0.00 (0.00)

glibc 12486 assertion F-AA 100% 100% 0.01 (0.00)

Results are the mean of five trials. Values in parentheses show standard deviations.

Table 2: Data race detection and survival

final column shows how long Frost takes to recover from the
bug — this includes the cost of rolling back and executing
new replicas.

4.1.2 Results
The main result of these experiments is that Frost both sur-
vives and detects all 11 bugs in all 5 trials for each bug. For
these applications, surviving a bug adds little overhead to
application execution time, mostly because epochs are short
for server applications such as MySQL and Apache, and the
bugs in other applications occurred close to the end of exe-
cution, so little work was lost due to quashing future epochs.
We next provide more detail about each bug.

The pbzip2 data race can trigger a SIGSEGV when a worker
thread dereferences a pointer that the main thread has freed.
This is a Type II bug because the dereference must occur
after the deallocation but before the main thread exits. This
failure is self-evident, leading to the F-AA epoch outcome.

Apache bug #21287 is caused by lack of atomicity in up-
dating and checking the reference count on cache objects,
typically leading to a double free. This is a latent bug: the
data race leads to an incorrect value for the reference count,
which typically manifests later as an application fault. Frost
detects this bug via a memory divergence at the end of the
epoch in which the data race occurs, which is typically much
earlier than when the fault is exhibited. Early detection al-
lows Frost to avoid externalizing any output corrupted by
the data race. The bug may manifest as either a Type I or
Type II bug, depending on the order of cache operations.

Apache bug #25520 is a Type II atomicity violation in
which two threads concurrently modify a shared variable in
an unsafe manner. This leads to garbled output in Apache’s
access log. Frost detects a memory divergence since the log
data is buffered before it is written to the log. The epoch
classification is A-BC because the failure is not self-evident
and the two epoch-parallel executions produce a different or-
der of log messages (both orders are correct since the logged
operations execute concurrently).

Apache bug #45605 is an atomicity violation that occurs
when the dispatcher thread fails to recheck a condition after
waiting on a condition variable. For this bug to manifest, the
dispatcher thread must spin multiple times through a loop
and accept multiple connections. Frost prevents this bug
from manifesting in any replica because of its requirement

that output not be released prior to the end of an epoch.
Since accept is a synchronous network operation, two ac-

cepts cannot occur in the same epoch. Thus, Frost converts
the bug to a benign data race, which it detects. Even when
the requirement for multiple accepts is removed, Frost de-
tects the bug as a Type II race and survives it.

MySQL bug #644 is a Type II atomicity violation that
leads to an incorrect loop termination condition. This causes
memory corruption that eventually may cause MySQL to
crash. Frost detects this bug as a memory divergence at the
end of the buggy epoch. Thus, it recovers before memory
corruption causes incorrect output.

MySQL bug #791 is a Type II atomicity violation that
causes MySQL to fail to log operations. In a manner simi-
lar to Apache bug #25520, Frost sees an A-BC outcome for
the buggy epoch, although the difference occurs in external
output rather than memory state. As with the Apache bug,
the outputs in the two epoch-parallel replicas are different,
but both are correct.

MySQL bug #2011 is a Type II multi-variable atomicity
violation that occurs when MySQL rotates its relay logs.
This leads MySQL to fail an error check, leading to incorrect
behavior. Frost detects the bug as an A-BC outcome.

MySQL bug #3596 is the Type II bug shown in Fig-
ure 1(b). The NULL pointer dereference generates a self-
evident failure. The two epoch-parallel replicas avoid the
race and take correct-but-divergent paths depending on how
the condition is evaluated. Frost therefore sees the epoch
outcome as F-BC.

MySQL bug #12848 exposes an incorrect intermediate
cache size value during a cache resizing operation, leading
MySQL to crash. Although this variable is protected by
a lock for most accesses, one lock acquisition is missing,
leading to an incorrect order of operations that results in a
Type I bug. Since the crash occurs immediately, the failure
is self-evident.

A Type I bug in pfscan causes the main thread to enter a
spin-loop as it waits for worker threads to exit. Frost detects
the spin-loop as a self-evident failure and classifies the epoch
as F-FA. The third replica avoids the spin-loop by choosing
an order of racing instructions that violates the bug’s failure
requirement.

While reproducing the prior bugs, Frost detected an addi-
tional, unreported data race bug in glibc. Multiple threads
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Bug Harmful Race Detected? Benign Races
App Number Traditional Frost Traditional Frost

pbzip2 N/A 5 5 3 1
apache 21287 0 0 55 2
apache 25520 3 3 61 2
apache 45605 3 3 65 2
MySQL 644 4 4 2899 2
MySQL 791 3 3 808 1
MySQL 2011 0 0 1414 1
MySQL 3596 0 0 658 2
MySQL 12848 0 0 1449 2
pfscan N/A 5 5 0 0
glibc 12486 6 6 9 3

The third column shows the number of runs in which a
full-coverage, traditional dynamic race detector identifies the
harmful race and the fourth column shows the number of
runs in which Frost identifies the harmful race. The last two
columns report the number of benign races detected for that
benchmark in our runs.

Table 3: Comparison of data race detection coverage

concurrently update malloc statistics counters without syn-
chronization, leading to possibly incorrect values. When de-
bugging is enabled, additional checks on these variables trig-
ger assertions. If a data race causes invalid statistics, the as-
sertion can trigger incorrectly. We wrote a test program that
triggers this bug reliably. Since the assertion happens in the
same epoch as the data race, the failure is self-evident. We
have reported this data race to the glibc developer’s mailing
list and are awaiting confirmation.

In summary, for a diverse set of application bugs, Frost
both detects and survives all bugs in all trials with minimal
time needed for recovery. For latent bugs that corrupt ap-
plication state, Frost detects the failure in the epoch that
contains the data race bug rather than when the program
exhibits a self-evident symptom of failure and thereby avoids
externalizing buggy output.

4.2 Stand-alone race detection
We next compare the coverage of Frost’s data race detector
to that of a traditional happens-before dynamic data race
detector. Section 4.1.2 showed that Frost detects (and sur-
vives) all harmful data races in our benchmarks. However,
in those experiments, we considered only scenarios in which
the race manifests in a harmful manner. This may have
made it easier for Frost to detect these races by making it
more likely for replicas to diverge.

In this section, we repeat the experiments of Section 4.1.2,
but we make no special effort to have the bug manifest. That
is, we simply execute a sequence of actions that could po-

tentially lead to a buggy interleaving of racing instructions.
For comparison, we built a data race detector based on the
design of DJIT+ [34]. Although it is slow, this data race
detector provides full coverage; in other words, it detects
all data races that occur during program execution. Since
modern data race detectors often compromise coverage for
speed (e.g., by sampling), a full-coverage data race detector
such as the one we used provides the strongest competition.

Comparing the coverage of race detection tools is challeng-
ing since there is ordinarily no guarantee that each tool will
observe the same sequence of instructions and synchroniza-
tion operations during different executions of the program.

Fortunately, because Frost is built using the DoublePlay in-
frastructure, we can use DoublePlay to record the execution
of the application and deterministically replay the same ex-
ecution later. When we execute a dynamic race detector
on the replayed execution, it is guaranteed to see the same
happens-before order of synchronization operations as ob-
served by both the thread-parallel and epoch-parallel exe-
cutions. Further, the sequence of instructions executed by
each thread is guaranteed to be the same up to the first data
race. This ensures an apples-to-apples comparison.

Table 3 compares the coverage of Frost to that of the tra-
ditional dynamic race detector. We evaluated each bench-
mark for the same amount of testing time; the table shows
cumulative results for all runs.

For each run for which the traditional data race detec-
tor identified a harmful race, Frost also identified the same
race. The third column in Table 3 lists the number of runs
for which the traditional data race detector identified the
harmful race. The fourth column shows the number of runs
for which Frost identified the same race. For some harm-
ful races, neither Frost nor the traditional data race detec-
tor detect the race during our preset testing duration; this
is expected since dynamic data race detectors must see in-
structions execute without synchronization to report a race.

We also evaluated the benefit of the ordering heuristic
described in Section 3.4.2. When we executed Frost with
the heuristic disabled, it detected all harmful races detected
in Table 3 except for the harmful race in pbzip2. We verified
that Frost does not report this race without the heuristic due
to a priority inversion.

The last two columns in Table 3 list the number of be-
nign races identified by the traditional data race detector
and Frost for each benchmark. We manually classified 79
benign races reported by the traditional race detector in
the pbzip2, Apache, pfscan and glibc benchmarks, accord-
ing to a previously-proposed taxonomy [31], with the follow-
ing results: (a) user-constructed synchronization (42 races):
for example, Apache uses custom synchronization that the
traditional race detector is unaware of without annotation
and so the traditional race detector incorrectly identifies cor-
rectly synchronized accesses as racing, (b) redundant writes
(8 races): two threads write identical values to the same
location, (c) double checks (11 races): a variable is inten-
tionally checked without acquiring a lock and re-checked if
a test fails, and (d) approximate computation (18 races):
for example, glibc’s malloc routines maintain statistics and
some threads concurrently log the order in which they ser-
vice requests without synchronization. We also classified
MySQL #644 and found that user-constructed synchroniza-
tion accounted for 2619 benign data races, redundant writes
for 71, double checks for 153 and approximate computation
for 156. Due to the effort required, we have not classified
the other MySQL benchmarks.

In contrast, Frost reports many fewer benign races. For
example, if a race leads to transient divergence (e.g., an
idempotent write-write race), Frost does not flag the race
if the replica states converge before the end of the epoch.
Frost also need not be aware of custom synchronization if
that synchronization ensures that synchronized instructions
have identical effects on all replicas. In our benchmarks,
Frost identified only 8 benign races (2 double checks and 6
approximate computations). Thus, almost half of the races
identified by Frost were harmful, while less than 0.25% of the
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This figure shows how Frost affects execution time for four
benchmarks on an 8-core machine. We show results for 2, 3, 4
and 8 threads for pbzip2 and pfscan. Apache and MySQL are
I/O bound, so results are the same between 2 and 8 threads;
we show the 4 thread results as a representative sample. Re-
sults are the mean of five trials; error bars are 90% confidence
intervals. Frost adds a small amount of overhead (3-12%)
when there are sufficient cores to run the extra replicas. When
the number of worker threads exceeds 3 (pfscan) or 4 (pbzip2),
Frost cannot hide the cost of running additional replicas.

Figure 4: Execution time overhead

races identified by the traditional race detector were harmful
(with most benign races due to custom synchronization in
MySQL).

4.3 Performance

4.3.1 Methodology
Our previous experiment demonstrated Frost’s ability to
survive and detect data races in pbzip2, pfscan, Apache and
MySQL. We next measured the throughput overhead intro-
duced by Frost for these 4 applications by comparing the
execution time with Frost on the same 8-core server running
our modified Linux kernel and glibc to the execution time
running without Frost (i.e., running the same kernel and
glibc versions without the Frost modifications).

We evaluate pbzip2 compressing a 498 MB log file in paral-
lel. We use pfscan to search for a string in a directory with
935 MB of log files. We extended the benchmark to per-
form 150 iterations of the search so that we could measure
the overhead of Frost over a longer run while ensuring that
data is in the file cache (otherwise, our benchmark would be
disk-bound). We tested Apache using ab (Apache Bench) to
simultaneously send 5000 requests for a 70KB file from mul-
tiple clients on the same local network. We evaluate MySQL
using sysbench version 0.4.12. This benchmark uses multi-
ple client threads to generate 2600 total database queries on
a 9.8 GB myISAM database; 2000 queries are read-only and
600 update the database.

For these applications, the number of worker threads con-
trols the maximum number of cores that they can use ef-
fectively. For each benchmark, we varied the number of
worker threads from two to eight. Some benchmarks have
additional control threads which do little work during the
execution; we do not count these in the number of threads.
Pbzip2 uses two additional threads: one to read file data and
one to write the output; these threads are also not counted
in the number of threads shown. All results are the mean of
five trials.
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This figure shows Frost’s energy overhead. We show results
for 2, 3, 4 and 8 threads for pbzip2 and pfscan, and 4 threads
for Apache and MySQL. Results are the mean of five trials;
error bars are 90% confidence intervals.

Figure 5: Energy overhead

4.3.2 Throughput
The primary factor affecting Frost’s performance for CPU-

bound applications is the availability of unused cores. As
Figure 4 shows, Frost adds a reasonable 8% overhead for
pbzip2 and a 12% overhead for pfscan when these applica-
tions use only 2 cores. The reason that Frost’s execution
time overhead is low is that the server has spare resources
to run its additional replicas.

To measure how Frost’s overhead varies with the amount
of spare cores, we gradually increased the number of threads
used by the application up to the full capacity of the 8-core
machine. Frost performance for pfscan stops improving at
3 worker threads, which is expected since running 3 replicas
with 3 worker threads each requires 9 cores (1 more than
available on this computer). Frost performance continues to
scale up to 4 worker threads for pbzip2 due to application-
specific behavior. A data race in pbzip2 sometimes leads
to a spin-loop containing a call to nanosleep. One replica
does not consume CPU time when this happens. As ex-
pected, if these two CPU-bound applications use all 8 cores,
Frost adds slightly less than a 200% overhead. As with all
systems that use active replication, Frost cannot hide the
cost of running additional replicas when there are no spare
resources available for their execution.

In contrast, we found the server applications Apache and
MySQL do not scale with additional cores and are hence less
affected by Frost’s increased utilization. Specifically, we find
that Apache is bottlenecked on network I/O and MySQL is
bottlenecked on disk I/O. Since Apache and MySQL are not
CPU-bound, neither the original nor Frost’s execution time
is affected as we vary the number of threads from 2 to 8. For
this reason, we simply show the results for 4 threads. As
shown in Figure 4, Frost only adds 3% overhead for Apache
and 11% overhead for MySQL.

4.3.3 Energy use
Even when spare resources can hide the performance im-
pact of executing multiple replicas, the additional execution
has an energy cost. On perfectly energy-proportional hard-
ware, the energy overhead would be approximately 200%.
We were interested to know the energy cost on current hard-
ware, which is not particularly energy-proportional.
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This figure shows pfscan throughput (MB of data scanned
per second) with and without Frost. We vary the number of
pfscan worker threads. Results are the mean of five trials;
error bars are 90% confidence intervals.

Figure 6: Scalability on a 32-core server

We used a Watts Up? .Net power meter to measure the
energy consumed by the 8-core machine when running the
throughput benchmarks with and without Frost. As Fig-
ure 5 shows, Frost adds 26% energy overhead for pbzip2
and 34% overhead for pfscan when run with 2 threads. The
energy cost increases to 122% and 208% respectively when
the applications use 8 worker threads. Frost adds 28% en-
ergy overhead for Apache and 43% overhead for MySQL,
independent of the number of worker threads.

4.3.4 Scalability
As the 8-core machine runs out of CPU resources with only
2-3 worker threads, we next evaluate how Frost scales on a
32-core server with four 2.27 GHz 8-core Xeon X7560 proces-
sors and 1.8 GB of RAM. This server ran the same software
as in the previous experiments. We look at pfscan in these
experiments as it showed the highest 8-core overhead. We
scaled up the benchmark by increasing the number of data
scans by a factor of 100. We report the throughput, mea-
sured by the amount of data scanned by pfscan per second.

As Figure 6 shows, pfscan scales well without Frost until
it reaches 10 cores. At this point, we conjecture that it is us-
ing all the available memory bandwidth for the 32-core com-
puter. Frost scales well up to 6 cores on this computer, with
overhead less than 4%. Frost’s execution of pfscan achieves
maximum throughput at 7 cores. We conjecture that it hits
the memory wall sooner due to executing multiple replicas.
Because replicas execute the same workload, cache effects
presumably mitigate the fact that the combined replicas ac-
cess 3 times as much data as the original execution.

4.3.5 Sampling
As described in Section 3.3.3, Frost can be configured to
sample only a portion of a program’s execution. Sampling
reduces overhead, but Frost will only detect and/or survive
data races in the sampled intervals for which it executes
epoch-parallel replicas. Thus, Frost will experience a de-
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This figure shows Frost’s relative overhead running pfscan at
various sampling rates. A sampling rate of 0.25 means that
Frost detects and survives races in 1 out of 4 epochs. Results
are the mean of five trials; error bars are 90% confidence
intervals.

Figure 7: Effect of sampling on relative overhead

crease in its survival and detection rates for dynamic data
races that is proportional to the sampling rate.

We re-ran the CPU-bound pfscan benchmark with 8
worker threads on the 8-core computer used in our previous
experiments. We varied the percentage of epochs sampled
and measured the relative overhead that Frost adds to appli-
cation execution time. Figure 7 shows that with a sampling
rate of 3.5%, Frost adds only 17% relative overhead to the
benchmark. As the sampling rate increases, Frost’s relative
overhead scales roughly linearly up to approximately 200%
when no sampling is employed.

4.4 Discussion
In summary, Frost detects all harmful races detected by a
full-coverage dynamic race detector and survives those races
in our experiments. While these results are quite positive,
we believe there are a small set of scenarios that Frost will
fail to handle correctly, as described in Section 3.4. Frost’s
overhead ranges from 3–12% for the applications we mea-
sured when spare resources are available to execute addi-
tional replicas. When spare resources are not available,
the cost of executing additional replicas cannot be masked.
Frost scales well with the number of cores, though it may
experience limitations in other resources such as memory
bandwidth if that resource is the bottleneck for the applica-
tion being executed.

Frost’s measured overhead is slightly less than that re-
ported for the DoublePlay system on which it is built [44]
due to code optimizations added after the reporting of the
DoublePlay results. Uniparallel execution, as used by both
Frost and DoublePlay, can have substantially higher over-
heads for benchmarks that dirty memory pages very rapidly.
For example, by far the worst case overhead we measured
for DoublePlay was the ocean benchmark in the SPLASH-2
suite (121% with spare cores); we expect Frost would have
similar overhead with spare cores and 3x that overhead with-
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out spare cores.
These measured overheads are substantially less than

those reported for dynamic data race detectors that handle
non-managed code. As with other systems that use multiple
replicas, Frost offers a tradeoff between reliability and uti-
lization. During the software life cycle, one may choose to
employ Frost at different times as priorities change; e.g., one
can use Frost when software is newly released or updated to
survive and detect data race bugs, then disable Frost or sam-
ple a subset of epochs to reduce overhead when software is
believed to be race-free. Additionally, since it is inherently
difficult to scale many workloads (e.g., those that are I/O
bound), spare cores may often be available in production, in
which case Frost can mask its extra utilization. One could,
for instance, use a variation of sampling that only runs extra
replicas when spare cores are available.

5. RELATED WORK
As Frost can serve as a tool for either surviving or detecting
data races, we discuss related work in both areas.

5.1 Data race survival
The idea of using replication to survive errors dates back
to the early days of computing [45, 28]. In active (state-
machine) replication, replicas run in parallel and can be used
to detect errors and vote on which result is correct [41]. In
passive (primary-backup) replication, a single replica is used
until an error is detected, then another replica is started
from a checkpoint of a known-good state [8]. Passive repli-
cation incurs lower run-time overhead than active replication
but cannot detect errors by comparing replicas. Frost uses
active replication to detect and survive programming bugs.

In 1985, Jim Gray observed that just as transient hard-
ware errors could be handled by retrying the operation (a
type of passive replication), some software errors (dubbed
Heisenbugs) could be handled in the same manner. Re-
searchers have extended this idea in many ways, such
as retrying from successively older states [47], proactively
restarting to eliminate latent errors [20], shrinking the part
of the system that needs to be restarted [9], and reducing
the cost of running multiple replicas [19].

A general technique to increase the chance of survival in
replication-based systems is to use diverse replicas to re-
duce the probability of all replicas failing at the same time.
Many types of diversity can be added, including changing
the layout of memory [4, 17, 36], changing the instruction
set [2, 22], or even running multiple independently-written
versions of the program [1]. Our focus on ensuring at least
one correct replica is similar to work in security that creates
replicas with disjoint exploitation sets [11, 39].

The replication-based systems most closely related to
Frost are those that add diversity by changing the scheduling
of various events, such as changing the order in which mes-
sages or signals are delivered [36, 47] or changing the priority
order of processes [36]. Frost contributes to the domain of
replica diversity by introducing the idea of complementary
schedules, describing how complementary schedules enable
data race detection, and showing how to produce comple-
mentary schedules efficiently via non-preemptive scheduling
and uniparallelism.

The idea of controlling thread schedules has also been used
to explore the space of possible thread interleavings in model
checking and program testing [18, 30]. The goal of such prior

work is to explore the space of the possible behaviors to find
bugs. In contrast, the primary goal of Frost is to ensure that
at least one of the thread schedules executes racy accesses in
the correct order. This difference changes the algorithm used
to create schedules and leads to the design choice in Frost
to use two complementary schedules instead of many sched-
ules. Like Frost, CHESS [30] uses non-preemptive schedul-
ing to tightly control the thread schedule. However, because
CHESS is used only for testing, it has no need to parallelize
the execution of non-preemptive runs as Frost does.

Past research has examined several approaches that do
not require active replication for surviving concurrency bugs
that cause deadlocks [21, 46]. Frost is complementary to
these techniques as it targets a different class of concur-
rency bugs due to data races. Instead of detecting concur-
rency bugs and then recovering from them, recent research
proposes to actively avoid untested thread interleavings and
thereby reduce the chance of triggering concurrency bugs.
This approach, however, incurs high overhead [12] or re-
quires processor support [51]. Other researchers have ob-
served that some concurrency bugs can be eliminated by
minimizing preemptions and providing sequential seman-
tics [3]. Other systems [48] avoid known bugs by avoiding
thread schedules that lead to the buggy behavior; unlike
Frost, these systems do not survive the first occurrence of
unknown bugs.

5.2 Data race detection
In addition to its survival functionality, Frost can also be
used as a dynamic race detection tool, targeted either at
production or test environments. Data race detectors can
be compared along many dimensions, including overhead,
coverage (how many data races are detected), accuracy (how
many false positives are reported), and fidelity (how much
data about each race is provided).

Static race detectors (e.g., [13]) try to prove that a pro-
gram is free of data races; they incur no runtime overhead
but report many false positives (lowering accuracy) due to
the limits of static analysis, especially for less-structured
languages such as C. On the other hand, dynamic race de-
tectors seek only to detect when a specific run experiences
a data race; they must observe potentially racing instruc-
tions execute in order to report a race. Prior dynamic data
race detectors are mostly based on two basic techniques:
happens-before analysis [23, 42] and lockset analysis [40].
Both techniques analyze the synchronization and memory
operations issued by a program to determine whether a data
race may have occurred. Because memory operations occur
frequently, dynamic race detectors have historically slowed
programs by an order of magnitude. In a recent study,
Flanagan and Freund [15] compared several state-of-the-art
dynamic data race detectors and showed that their best Java
implementation is about 8.5x slower than native execution.
Implementations that check for data races in less-structured,
optimized code running outside of a virtual machine (such
as C and C++ programs) may have even higher overhead,
as exemplified by recently-released industrial strength race
detectors from Intel [38] and Google [43], which incur more
than 30x performance overhead.

Dynamic race detectors can use language-specific or
runtime-specific features to reduce overhead. RaceTrack [52]
runs CPU-intensive benchmark in Microsoft’s CLR 2.6-3.2x
slower, but limits coverage by not checking for races involv-
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ing native code, which represents a non-negligible number
of methods. RaceTrack also leverages the object-oriented
nature of the checked code to employ a clever refinement
strategy in which it first checks for races at object granu-
larity, then subsequently checks accesses to the object for
races at field granularity. Object-granularity checks may
have substantial false positives, so are reported at lower pri-
ority. However, unless a particular pair of instructions races
twice for the same object, RaceTrack cannot report the race
with high confidence. Overhead can also be reduced by elim-
inating checks that are shown to be unnecessary via a sepa-
rate static analysis phase [10]. However, these optimizations
are difficult to implement precisely for unsafe languages.

Frost executes applications 3–12% slower if spare cores
are available to parallelize replica execution, and approxi-
mately 3x slower if spare cores are not available. This com-
pares very favorably with all prior dynamic race detection
tools for general code running outside of a virtual machine,
and also with most tools for managed code. While Frost
may miss races that are detected by the higher-overhead
happens-before race detectors, in practice Frost has detected
all harmful races that would be reported by such detectors.

Several recent race detectors use sampling to trade cover-
age for reduced overhead by monitoring only a portion of a
program’s execution. PACER [6] uses random sampling, so
has coverage approximately equal to the sampling rate used.
At a 3% sampling rate, PACER runs CPU-intensive applica-
tions 1.6-2.1x slower. However, PACER reports only 2–20%
of all dynamic races at that sampling rate. LiteRace [29]
uses a heuristic (adaptive bursty thread-local sampling that
biases execution toward cold code) to increase the expected
number of races found, but the same heuristic may system-
atically bias against finding certain races (such as those ex-
ecuted along infrequent code paths in frequently-executed
functions). LiteRace runs CPU-intensive applications 2.4x
slower to find 70% of all races and 50% of rare races.

Sampling is orthogonal to most data race detection tech-
niques. Frost implements sampling by checking only a por-
tion of epochs. At a slightly greater than 3% sampling rate,
Frost’s overhead is only 17% for a CPU-bound benchmark.
It would also be possible to use heuristics similar to those
used by LiteRace, but the application is complicated by the
granularity of Frost’s epochs. Whereas LiteRace toggles in-
strumentation at function granularity, Frost can only toggle
instrumentation at epoch granularity. However, Frost could
benefit from its thread-parallel execution, for example by
measuring the percentage of cold code executed before de-
ciding which epochs to check via epoch-parallel execution.

It is possible to reduce dynamic data race detection over-
head further through the use of custom hardware [35]. Data
Collider [14] repurposes existing hardware (watchpoints) to
implement a novel dynamic race detection technique. Data
Collider samples memory accesses by pausing the accessing
thread and using watchpoints to identify unsynchronized ac-
cesses to the memory location made by other threads. The
paucity of hardware watchpoints on existing processors (4 in
their experiments) limits the number of memory locations
that can be sampled simultaneously. Data Collider can thus
achieve very low overhead (often less than 10%) but may not
have suitable coverage to detect rare races since the sampling
rate (only 4 memory locations at a time) is very low. It is
also not clear how Data Collider will scale as the number of
cores increases because the number of watchpoints per core

does not increase and sampling an address requires an IPI
to all cores to set a watchpoint.

Most data races are not bugs. Prior work has shown that
comparing execution outcomes for schedules with different
orderings of conflicting memory accesses can be used to clas-
sify data races as benign or potentially harmful [31]. This
can be viewed as a method of improving accuracy. Frost’s
design applies this filtering technique. In contrast to the
prior work that assumed that the data race was known in
order to generate thread schedules, Frost uses complemen-
tary schedules to detect races that are unknown at the time
that the schedules are generated.

Frost has extremely high fidelity because it can determin-
istically replay the execution of a program up to the first
data race in an epoch (and often beyond that). This al-
lows Frost to re-generate any diagnostic information, such
as stack traces, required by a developer. We use this capa-
bility, for example, in Section 4.2 to implement a complete
dynamic race detector. Other tools such as Intel’s Thread-
Checker [38] provide stack traces for both threads partici-
pating in a data race, and some tools, such as RaceTrack [52]
can guarantee a stack trace for only one thread.

Pike [16] also uses multiple replicas to test for concurrency
bugs by comparing executions with interleaved requests with
executions with serialized requests (which are assumed to
be correct). Pike requires that the application provide a
cononicalized representation of its state that is independent
of thread interleavings, which could be time-consuming to
develop. Pike has high overhead (requiring a month to test
one application) but can find more types of concurrency bugs
than just data race bugs. TightLip [53] compares the output
of a replica with access to sensitive data with that of a replica
without such access to detect information leaks.

6. CONCLUSION
Frost introduces two main ideas to mitigate the problem
of data races: complementary schedules and outcome-based
race detection. Running multiple replicas with complemen-
tary schedules ensures that, for most types of data race bugs,
at least one replica avoids the order of racing instructions
that leads to incorrect program execution. This property
enables a new, faster dynamic data race detector, which
detects races by comparing outcomes of different replicas
rather than analyzing the events executed. After Frost de-
tects a data race, it analyzes the combination of results and
selects the strategy that is most likely to survive the bug.
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