
Software fault isolation with
API integrity and multi-principal modules

Yandong Mao, Haogang Chen, Dong Zhou†, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek
MIT CSAIL, †Tsinghua University IIIS

ABSTRACT
The security of many applications relies on the kernel being secure,
but history suggests that kernel vulnerabilities are routinely discov-
ered and exploited. In particular, exploitable vulnerabilities in kernel
modules are common. This paper proposes LXFI, a system which
isolates kernel modules from the core kernel so that vulnerabilities
in kernel modules cannot lead to a privilege escalation attack. To
safely give kernel modules access to complex kernel APIs, LXFI
introduces the notion of API integrity, which captures the set of
contracts assumed by an interface. To partition the privileges within
a shared module, LXFI introduces module principals. Programmers
specify principals and API integrity rules through capabilities and
annotations. Using a compiler plugin, LXFI instruments the gener-
ated code to grant, check, and transfer capabilities between modules,
according to the programmer’s annotations. An evaluation with
Linux shows that the annotations required on kernel functions to
support a new module are moderate, and that LXFI is able to prevent
three known privilege-escalation vulnerabilities. Stress tests of a
network driver module also show that isolating this module using
LXFI does not hurt TCP throughput but reduces UDP throughput by
35%, and increases CPU utilization by 2.2–3.7×.

Categories and Subject Descriptors: D.4.6 [Operating Sys-
tems]: Security and Protection.

General Terms: Security.

1 INTRODUCTION
Kernel exploits are not as common as Web exploits, but they do
happen [2]. For example, for the Linux kernel, a kernel exploit
is reported about once per month, and often these exploits attack
kernel modules instead of the core kernel [5]. These kernel exploits
are devastating because they typically allow the adversary to ob-
tain “root” privilege. For instance, CVE-2010-3904 reports on a
vulnerability in Linux’s Reliable Datagram Socket (RDS) module
that allowed an adversary to write an arbitrary value to an arbitrary
kernel address because the RDS page copy function missed a check
on a user-supplied pointer. This vulnerability can be exploited to
overwrite function pointers and invoke arbitrary kernel or user code.
The contribution of this paper is LXFI, a new software fault isolation
system to isolate kernel modules. LXFI allows a module developer
to partition the privileges held by a single shared module into multi-
ple principals, and provides annotations to enforce API integrity for

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP ’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . . $10.00.

complex, irregular kernel interfaces such as the ones found in the
Linux kernel and exploited by attackers.

Previous systems such as XFI [9] have used software isola-
tion [26] to isolate kernel modules from the core kernel, thereby
protecting against a class of attacks on kernel modules. The chal-
lenge is that modules need to use support functions in the core
kernel to operate correctly; for example, they need to be able ac-
quire locks, copy data, etc., which require invoking functions in the
kernel core for these abstractions. Since the kernel does not provide
type safety for pointers, a compromised module can exploit some
seemingly “harmless” kernel API to gain privilege. For instance, the
spin lock init function in the kernel writes the value zero to a
spinlock that is identified by a pointer argument. A module that can
invoke spin lock init could pass the address of the user ID value
in the current process structure as the spinlock pointer, thereby trick-
ing spin lock init into setting the user ID of the current process
to zero (i.e., root in Linux), and gaining root privileges.

Two recent software fault isolation systems, XFI and BGI [4],
have two significant shortcomings. First, neither can deal with com-
plex, irregular interfaces; as noted by the authors of XFI, attacks by
modules that abuse an over-permissive kernel routine that a module
is allowed to invoke remain an open problem [9, §6.1]. BGI tackles
this problem in the context of Windows kernel drivers, which have
a well-defined regular structure amenable to manual interposition
on all kernel/module interactions. The Linux kernel, on the other
hand, has a more complex interface that makes manual interposition
difficult. For example, Linux kernel interfaces often store func-
tion pointers to both kernel and module functions in data structures
that are updated by modules, and invoked by the kernel in many
locations.

The second shortcoming of XFI and BGI is that they cannot
isolate different instances of the same module. For example, a single
kernel module might be used to implement many instances of the
same abstraction (e.g., many block devices or many sockets). If one
of these instances is compromised by an adversary, the adversary
also gains access to the privileges of all other instances as well.

This paper’s goal is to solve both of these problems for Linux
kernel modules. To partition the privileges held by a shared mod-
ule, LXFI extends software fault isolation to allow modules to have
multiple principals. Principals correspond to distinct instances of
abstractions provided by a kernel module, such as a single socket
or a block device provided by a module that can instantiate many
of them. Programmers annotate kernel interfaces to specify what
principal should be used when the module is invoked, and each prin-
cipal’s privileges are kept separate by LXFI. Thus, if an adversary
compromises one instance of the module, the adversary can only
misuse that principal’s privileges (e.g., being able to modify data on
a single socket, or being able to write to a single block device).

To handle complex kernel interfaces, LXFI introduces API in-
tegrity, which captures the contract assumed by kernel developers
for a particular interface. To capture API integrity, LXFI uses capa-
bilities to track the privileges held by each principal, and introduces
light-weight annotations that programmers use to express the API

115

integrity of an interface in terms of capabilities and principals. LXFI
enforces API integrity at runtime through software fault isolation
techniques.

To test out these ideas, we implemented LXFI for Linux kernel
modules. The implementation provides the same basic security prop-
erties as XFI and BGI, using similar techniques, but also enforces
API integrity for multiple principals. To use LXFI, a programmer
must first specify the security policy for an API, using source-level
annotations. LXFI enforces the specified security policy with the
help of two components. The first is a compile-time rewriter, which
inserts checks into kernel code that, when invoked at runtime, verify
that security policies are upheld. The second is a runtime compo-
nent, which maintains the privileges of each module and checks
whether a module has the necessary privileges for any given oper-
ation at runtime. To enforce API integrity efficiently, LXFI uses a
number of optimizations, such as writer-set tracking. To isolate a
module at runtime, LXFI sets up the initial capabilities, manages
the capabilities as they are added and revoked, and checks them on
all calls between the module and the core kernel according to the
programmer’s annotations.

An evaluation for 10 kernel modules shows that supporting a
new module requires 8–133 annotations, of which many are shared
between modules. Furthermore, the evaluation shows that LXFI can
prevent exploits for three CVE-documented vulnerabilities in kernel
modules (including the RDS module). Stress tests with a network
driver module show that isolating this module using LXFI does not
hurt TCP throughput, but reduces UDP throughput by 35%, and
increases CPU utilization by 2.2–3.7×.

The contributions of the paper are as follows. First, this paper
extends the typical module isolation model to support multiple prin-
cipals per code module. Second, this paper introduces the notion of
API integrity, and provides a light-weight annotation language that
helps describe the security properties of kernel and module inter-
faces in terms of capabilities. Finally, this paper demonstrates that
LXFI is practical in terms of performance, security, and annotation
effort by evaluating it on the Linux kernel.

The rest of the paper is organized as follows. The next section
defines the goal of this paper, and the threat model assumed by
LXFI. §3 gives the design of LXFI and its annotations. We describe
LXFI’s compile-time and runtime components in §4 and §5, and
discuss how we expect kernel developers to use LXFI in practice in
§6. §7 describes the implementation details. We evaluate LXFI in
§8, discuss related work in §9, and conclude in §10.

2 GOAL AND PROBLEM

LXFI’s goal is to prevent an adversary from exploiting vulnerabilities
in kernel modules in a way that leads to a privilege escalation attack.
Many exploitable kernel vulnerabilities are found in kernel modules.
For example, Chen et al. find that two thirds of kernel vulnerabilities
reported by CVE between Jan 2010 and March 2011 are in kernel
modules [1, 5].

When adversaries exploit bugs in the kernel, they trick the kernel
code into performing operations that the code would not normally
do. For example, an adversary can trick the kernel into writing
to arbitrary memory locations, or invoking arbitrary kernel code.
Adversaries can leverage this to gain additional privileges (e.g., by
running their own code in the kernel, or overwriting the user ID of
the current process), or to disclose data from the system. The focus
of LXFI is on preventing integrity attacks (e.g., privilege escalation),
and not on data disclosure.

In LXFI, we assume that we will not be able to fix all possible
underlying software bugs, but instead we focus on reducing the

possible operations the adversary can trick the kernel into perform-
ing to the set of operations that code (e.g., a kernel module) would
ordinarily be able to do. For example, if a module does not ordinar-
ily modify the user ID field in the process structure, LXFI should
prevent the module from doing so even if it is compromised by an
adversary. Similarly, if a module does not ordinarily invoke kernel
functions to write blocks to a disk, LXFI should prevent a module
from doing so, even if it is compromised.

LXFI’s approach to prevent privilege escalation is to isolate the
modules from each other and from the core of the kernel, as de-
scribed above. Of course, a module may legitimately need to raise
the privileges of the current process, such as through setuid bits in
a file system, so this approach will not prevent all possible privilege
escalation exploits. However, most of the exploits found in practice
take advantage of the fact that every buggy module is fully privi-
leged, and making modules less privileged will reduce the number
of possible exploits.

Another challenge in making module isolation work lies in know-
ing what policy rules to enforce at module boundaries. Since the
Linux kernel was written without module isolation in mind, all such
rules are implicit, and can only be determined by manual code in-
spection. One possible solution would be to re-design the Linux
kernel to be more amenable to privilege separation, and to have
simpler interfaces where all privileges are explicit; however, doing
this would involve a significant amount of work. LXFI takes a dif-
ferent approach that tries to make as few modifications to the Linux
kernel as possible. To this end, LXFI, like previous module isolation
systems [4, 9, 26], relies on developers to specify this policy.

In the rest of this section, we will discuss two specific challenges
that have not been addressed in prior work that LXFI solves, fol-
lowed by the assumptions made by LXFI. Briefly, the challenges
have to do with a shared module that has many privileges on behalf
of its many clients, and with concisely specifying module policies
for complex kernel interfaces like the ones in the Linux kernel.

2.1 Privileges in shared modules
The first challenge is that a single kernel module may have many
privileges if that kernel module is being used in many contexts.
For example, a system may use the dm-crypt module to manage
encrypted block devices, including both the system’s main disk
and any USB flash drives that may be connected by the user. The
entire dm-cryptmodule must have privileges to write to all of these
devices. However, if the user accidentally plugs in a malicious
USB flash drive that exploits a bug in dm-crypt, the compromised
dm-crypt module will be able to corrupt all of the block devices
it manages. Similarly, a network protocol module, such as econet,
must have privileges to write to all of the sockets managed by that
module. As a result, if an adversary exploits a vulnerability in the
context of his or her econet connection, the adversary will be able
to modify the data sent over any other econet socket as well.

2.2 Lack of API integrity
The second challenge is that kernel modules use complex kernel
interfaces. These kernel interfaces could be mis-used by a com-
promised module to gain additional privileges (e.g., by corrupting
memory). One approach is to re-design kernel interfaces to make it
easy to enforce safety properties, such as in Windows, as illustrated
by BGI [4]. However, LXFI’s goal is to isolate existing Linux kernel
modules, where many of the existing interfaces are complex.

To prevent these kinds of attacks in Linux, we define API integrity
as the contract that developers intend for any module to follow
when using some interface, such as the memory allocator, the PCI
subsystem, or the network stack. The set of rules that make up the
contract between a kernel module and the core kernel are different

116

1 struct pci_driver {
2 int (*probe) (struct pci_dev *pcidev);
3 };
4

5 struct net_device {
6 struct net_device_ops *dev_ops;
7 };
8

9 struct net_device_ops {
10 netdev_tx_t (*ndo_start_xmit)
11 (struct sk_buff *skb,
12 struct net_device *dev);
13 };
14

15 /* Exported kernel functions */
16 void pci_enable_device(struct pci_dev *pcidev);
17 void netif_rx(struct sk_buff *skb);
18

19 /* In core kernel code */
20 module_driver->probe(pcidev);
21

22 void
23 netif_napi_add(struct net_device *dev,
24 struct napi_struct *napi,
25 int (*poll) (struct napi_struct *, int))
26 {
27 dev->dev_ops->ndo_start_xmit(skb, ndev);
28 (*poll) (napi, 5);
29 }
30

31 /* In network device driver’s module */
32 int
33 module_pci_probe(struct pci_dev *pcidev) {
34 ndev = alloc_etherdev(...);
35 pci_enable_device(pcidev);
36 ndev->dev_ops->ndo_start_xmit = myxmit;
37 netif_napi_add(ndev, napi, my_poll_cb);
38 return 0;
39 }
40

41 /* In network device driver’s code */
42 netif_rx(skb);

Figure 1: Parts of a PCI network device driver in Linux.

for each kernel API, and the resulting operations that the kernel
module can perform are also API-specific. However, by enforcing
API integrity—i.e., ensuring that each kernel module follows the
intended contract for core kernel interfaces that it uses—LXFI will
ensure that a compromised kernel module cannot take advantage of
the core kernel’s interfaces to perform more operations than the API
was intended to allow.

To understand the kinds of contracts that an interface may require,
consider a PCI network device driver for the Linux kernel, shown in
Figure 1. In the rest of this section, we will present several examples
of contracts that make up API integrity for this interface, and how a
kernel module may violate those contracts.

Memory safety and control flow integrity. Two basic safety
properties that all software fault isolation systems enforce is memory
safety, which guarantees that a module can only access memory that
it owns or has legitimate access to, and control flow integrity, which
guarantees that a module can only execute its own isolated code and
external functions that it has legitimate access to. However, memory
safety and control flow integrity are insufficient to provide API in-
tegrity, and the rest of this section describes other safety properties
enforced by LXFI.

Function call integrity. The first aspect of API integrity deals
with how a kernel module may invoke the core kernel’s functions.
These contracts are typically concerned with the arguments that the
module can provide, and the specific functions that can be invoked,
as we will now illustrate.

Many function call contracts involve the notion of object own-
ership. For example, when the network device driver module in
Figure 1 calls pci enable device to enable the PCI device on
line 35, it is expected that the module will provide a pointer to its
own pci dev structure as the argument (i.e., the one it received as
an argument to module pci probe). If the module passes in some
other pci dev structure to pci enable device, it may be able to
interfere with other devices, and potentially cause problems for other
modules. Furthermore, if the module is able to construct its own
pci dev structure, and pass it as an argument, it may be able to trick
the kernel into performing arbitrary device I/O or memory writes.

A common type of object ownership is write access to memory.
Many core kernel functions write to a memory address supplied
by the caller, such as spin lock init from the example in §1. In
these cases, a kernel module should only be able to pass addresses
of kernel memory it has write access to (for a sufficient number
of bytes) to such functions; otherwise, a kernel module may trick
the kernel into writing to arbitrary kernel memory. On the other
hand, a kernel module can also have ownership of an object with-
out being able to write to its memory: in the case of the network
device, modules should not directly modify the memory contents
of their pci dev struct, since it would allow the module to trick the
kernel into controlling a different device, or dereferencing arbitrary
pointers.

Another type of function call contract relates to callback functions.
Several kernel interfaces involve passing around callback functions,
such as the netif napi add interface on line 23. In this case, the
kernel invokes the poll function pointer at a later time, and expects
that this points to a legitimate function. If the module is able to
provide arbitrary function pointers, such as my poll cb on line 37,
the module may be able to trick the kernel into running arbitrary
code when it invokes the callback on line 28. Moreover, the module
should be able to provide only pointers to functions that the module
itself can invoke; otherwise, it can trick the kernel into running a
function that it is not allowed to call directly.

Function callbacks are also used in the other direction: for mod-
ules to call back into the core kernel. Once the core kernel has
provided a callback function a kernel module, the module is ex-
pected to invoke the callback, probably with a prescribed callback
argument. The module should not invoke the callback function be-
fore the callback is provided, or with a different callback argument.

Data structure integrity. In addition to memory safety, many
kernel interfaces assume that the actual data stored in a particular
memory location obeys certain invariants. For example, an sk buff
structure, representing a network packet in the Linux kernel, contains
a pointer to packet data. When the module passes an sk buff
structure to the core kernel on line 42, it is expected to provide
a legitimate data pointer inside of the sk buff, and that pointer
should point to memory that the kernel module has write access to
(in cases when the sk buff’s payload is going to be modified). If
this invariant is violated, the kernel code can be tricked into writing
to arbitrary memory.

Another kind of data structure integrity deals with function point-
ers that are stored in shared memory. The Linux kernel often stores
callback function pointers in data structures. For example, the core
kernel invokes a function pointer from dev->dev ops on line 27.
The implicit assumption the kernel is making is that the function
pointer points to legitimate code that should be executed. However,

117

if the kernel module was able to write arbitrary values to the function
pointer field, it could trick the core kernel into executing arbitrary
code. Thus, in LXFI, even though the module can write a legitimate
pointer on line 36, it should not be able to corrupt it later. To address
this problem, LXFI checks whether the function pointer value that
is about to be invoked was a legitimate function address that the
pointer’s writer was allowed to invoke too.

API integrity in Linux. In the general case, it is difficult to find
or enumerate all of the contracts necessary for API integrity. How-
ever, in our experience, kernel module interfaces in Linux tend to
be reasonably well-structured, and it is possible to capture the con-
tracts of many interfaces in a succinct manner. Even though these
interfaces are not used as security boundaries in the Linux kernel,
they are carefully designed by kernel developers to support a range
of kernel modules, and contain many sanity checks to catch buggy
behavior by modules (e.g., calls to BUG()).

LXFI relies on developers to provide annotations capturing the
API integrity of each interface. LXFI provides a safe default, in that
a kernel function with no annotations (e.g., one that the developer
forgot to annotate) cannot be accessed by a kernel module. However,
LXFI trusts any annotations that the developer provides; if there
is any mistake or omission in an annotation, LXFI will enforce
the policy specified in the annotation, and not the intended policy.
Finally, in cases when it is difficult to enforce API integrity using
LXFI, re-designing the interface to fit LXFI’s annotations may be
necessary (however, we have not encountered any such cases for the
modules we have annotated).

2.3 Threat model
LXFI makes two assumptions to isolate kernel modules. First, LXFI
assumes that the core kernel, the annotations on the kernel’s inter-
faces, and the LXFI verifier itself are correct.

Second, LXFI infers the initial privileges that a module should be
granted based on the functions that module’s code imports. Thus,
we trust that the programmer of each kernel module only invokes
functions needed by that module. We believe this is an appropriate
assumption because kernel developers are largely well-meaning, and
do not try to access unnecessary interfaces on purpose. Thus, by
capturing the intended privileges of a module, and by looking at the
interfaces required in the source code, we can prevent an adversary
from accessing any additional interfaces at runtime.

3 ANNOTATIONS
At a high level, LXFI’s workflow consists of four steps. First, kernel
developers annotate core kernel interfaces to enforce API integrity
between the core kernel and modules. Second, module developers
annotate certain parts of their module where they need to switch priv-
ileges between different module principals. Third, LXFI’s compile-
time rewriter instruments the generated code to perform API integrity
checks at runtime. Finally, LXFI’s runtime is invoked at these instru-
mented points, and performs the necessary checks to uphold API
integrity. If the checks fail, the kernel panics. The rest of this section
describes LXFI’s principals, privileges, and annotations.

3.1 Principals
Many modules provide an abstraction that can be instantiated many
times. For example, the econet protocol module provides an
econet socket abstraction that can be instantiated to create a spe-
cific socket. Similarly, device mapper modules such as dm-crypt
and dmraid provide a layered block device abstraction that can be
instantiated for a particular block device.

To minimize the privileges that an adversary can take advantage
of when they exploit a vulnerability in a module, LXFI logically

breaks up a module into multiple principals corresponding to each
instance of the module’s abstraction. For example, each econet
socket corresponds to a separate module principal, and each block
device provided by dm-crypt also corresponds to a separate mod-
ule principal. Each module principal will have access to only the
privileges needed by that instance of the module’s abstraction, and
not to the global privileges of the entire module.

To support this plan, LXFI provides three mechanisms. First,
LXFI allows programmers to define principals in a module. To avoid
requiring existing code to keep track of LXFI-specific principals,
LXFI names module principals based on existing data structures used
to represent an instance of the module’s abstraction. For example,
in econet, LXFI uses the address of the socket structure as the
principal name. Similarly, in device mapper modules, LXFI uses the
address of the block device.

Second, LXFI allows programmers to define what principal
should be used when invoking a module, by providing annotations
on function types (which we discuss more concretely in §3.3). For
example, when the kernel invokes the econet module to send a
message over a socket, LXFI should execute the module’s code in
the context of that socket’s principal. To achieve this behavior, the
programmer annotates the message send function to specify that the
socket pointer argument specifies the principal name. At runtime,
LXFI uses this annotation to switch the current principal to the one
specified by the function’s arguments when the function is invoked.
These principal identifiers are stored on a shadow stack, so that if
an interrupt comes in while a module is executing, the module’s
privileges are saved before handling the interrupt, and restored on
interrupt exit.

Third, a module may share some state between multiple instances.
For example, the econet module maintains a linked list of all sock-
ets managed by that module. Since each linked list pointer is stored
in a different socket object, no single instance principal is able to add
or remove elements from this list. Performing these cross-instance
operations requires global privileges of the entire module. In these
cases, LXFI allows programmers to switch the current principal to
the module’s global principal, which implicitly has access to the
capabilities of all other principals in that module. For example, in
econet, the programmer would modify the function used to add
or remove sockets from this linked list to switch to running as the
global principal. Conversely, a shared principal is used to repre-
sent privileges accessible to all principals in a module, such as the
privileges to invoke the initial kernel functions required by that mod-
ule. All principals in a module implicitly have access to all of the
privileges of the shared principal.

To ensure that a function that switches to the global principal
cannot be tricked into misusing its global privileges, programmers
must insert appropriate checks before every such privilege change.
LXFI’s control flow integrity then ensures that these checks cannot
be bypassed by an adversary at runtime. A similar requirement arises
for other privileged LXFI functions, such as manipulating principals.
We give an example of such checks in §3.4.

3.2 Capabilities
Modules do not explicitly define the privileges they require at
runtime—such as what memory they may write, or what functions
they may call—and even for functions that a module may legiti-
mately need, the function itself may be expecting the module to
invoke it in certain ways, as described in §2.2 and Figure 1.

To keep track of module privileges, LXFI maintains a set of
capabilities, similar to BGI, that track the privileges of each module
principal at runtime. LXFI supports three types of capabilities, as
follows:

118

annotation ::= pre(action) | post(action) | principal(c-expr)

action ::= copy(caplist)

| transfer(caplist)

| check(caplist)

| if (c-expr) action

caplist ::= (c,ptr, [size])

| iterator-func(c-expr)

Figure 2: Grammar for LXFI annotations. A c-expr corresponds to a
C expression that can reference the annotated function’s arguments and
its return value. An iterator-func is a name of a programmer-supplied
C function that takes a c-expr argument, and iterates over a set of capa-
bilities. c specifies the type of the capability (either WRITE, CALL, or
REF, as described in §3.2), and ptr is the address or argument for the ca-
pability. The size parameter is optional, and defaults to sizeof(*ptr).

WRITE (ptr,size). This capability means that a module can write
any values to memory region [ptr,ptr+ size) in the kernel address
space. It can also pass addresses inside the region to kernel routines
that require writable memory. For example, the network device
module in Figure 1 would have a WRITE capability for its sk buff
packets and their payloads, which allows it to modify the packet.

REF (t,a). This capability allows the module to pass a as an
argument to kernel functions that require a capability of REF type
t, capturing the object ownership idea from §2. Type t is often
the C type of the argument, although it need not be the case, and
we describe situations in which this happens in §6. Unlike the
WRITE capability, REF (t,a) does not grant write access to memory
at address a. For instance, in our network module, the module
should receive a REF (pci dev,pcidev) capability when the core
kernel invokes module driver->probe on line 20, if that code was
annotated to support LXFI capabilities. This capability would then
allow the module to call pci enable device on line 35.

CALL (a). The module can call or jump to a target memory ad-
dress a. In our network module example, the module has a CALL
capability for netif rx, pci enable device, and others; this par-
ticular example has no instances of dynamic call capabilities pro-
vided to the module by the core kernel at runtime.

The basic operations on capabilities are granting a capability,
revoking all copies of a capability, and checking whether a caller
has a capability. To set up the basic execution environment for a
module, LXFI grants a module initial capabilities when the module
is loaded, which include: (1) a WRITE capability to its writable data
section; (2) a WRITE capability to the current kernel stack (does not
include the shadow stack, which we describe later); and (3) CALL
capabilities to all kernel routines that are imported in the module’s
symbol table.

A module can gain or lose additional capabilities when it calls
support functions in the core kernel. For example, after a module
calls kmalloc, it gains a WRITE capability to the newly allocated
memory. Similarly, after calling kfree, LXFI’s runtime revokes the
corresponding WRITE capability from that module.

3.3 Interface annotations
Although the principal and capability mechanisms allow LXFI to
reason about the privileges held by each module principal, it is
cumbersome for the programmer to manually insert calls to switch
principals, transfer capabilities, and verify whether a module has
a certain capability, for each kernel/module API function (as in

BGI [4]). To simplify the programmer’s job, LXFI allows program-
mers to annotate interfaces (i.e., prototype definitions in C) with
principals and capability actions. LXFI leverages the clang support
for attributes to specify the annotations.

LXFI annotations are consulted when invoking a function, and
can be associated (in the source code) with function declarations,
function definitions, or function pointer types. A single kernel func-
tion (or function pointer type) can have multiple LXFI annotations;
each one describes what action the LXFI runtime should take, and
specifies whether that action should be taken before the function is
called, or after the call finishes, as indicated by pre and post key-
words. Figure 2 summarizes the grammar for LXFI’s annotations.

There are three types of annotations supported by LXFI: pre, post,
and principal. The first two perform a specified action either before
invoking the function or after it returns. The principal annotation
specifies the name of the module principal that should be used to
execute the called function, which we discuss shortly.

There are four actions that can be performed by either pre or post
annotations. A copy action grants a capability from the caller to the
callee for pre annotations (and vice-versa for post). A transfer ac-
tion moves ownership of a capability from the caller to the callee for
pre annotations (and vice-versa for post). Both copy and transfer
ensure that the capability is owned in the first place before granting
it. A check action verifies that the caller owns a particular capability;
all check annotations are pre. To support conditional annotations,
LXFI supports if actions, which conditionally perform some action
(such as a copy or a transfer) based on an expression that can in-
volve either the function’s arguments, or, for post annotations, the
function’s return value. For example, this allows transferring capa-
bilities for a memory buffer only if the return value does not indicate
an error.

Transfer actions revoke the transferred capability from all princi-
pals in the system, rather than just from the immediate source of the
transfer. (As described above, transfers happen in different directions
depending on whether the action happens in a pre or post context.)
Revoking a capability from all principals ensures that no copies
of the capability remain, and allows the object referred to by the
capability to be re-used safely. For example, the memory allocator’s
kfree function uses transfer to ensure no outstanding capabilities
exist for free memory. Similarly, when a network driver hands a
packet to the core kernel, a transfer action ensures the driver—and
any other module the driver could have given capabilities to—cannot
modify the packet any more.

The copy, transfer, and check actions take as argument the list
of capabilities to which the action should be applied. In the simple
case, the capability can be specified inline, but the programmer can
also implement their own function that returns a list of capabilities,
and use that function in an action to iterate over all of the returned
capabilities. Figure 3 provides several example LXFI annotations
and their semantics.

To specify the principal with whose privilege the function should
be invoked, LXFI provides a principal annotation. LXFI’s princi-
pals are named by arbitrary pointers. This is convenient because
Linux kernel interfaces often have an object corresponding to every
instance of an abstraction that a principal tries to capture. For exam-
ple, a network device driver would use the address of its net device
structure as the principal name to separate different network inter-
faces from each other. Adding explicit names for principals would
require extending existing Linux data structures to store this ad-
ditional name, which would require making changes to the Linux
kernel, and potentially break data structure invariants, such as align-
ment or layout.

119

Annotation Semantics
pre(copy(c,ptr, [size])) Check that caller owns capability c for [ptr,ptr+ size) before calling function.

Copy capability c from caller to callee for [ptr,ptr+ size) before the call.
post(copy(c,ptr, [size])) Check that callee owns capability c for [ptr,ptr+ size) after the call.

Copy capability c from callee to caller for [ptr,ptr+ size) after the call.
pre(transfer(c,ptr, [size])) Check that caller owns capability c for [ptr,ptr+ size) before calling function.

Transfer capability c from caller to callee for [ptr,ptr+ size) before the call.
post(transfer(c,ptr, [size])) Check that callee owns capability c for [ptr,ptr+ size) after the call.

Transfer capability c from callee to caller for [ptr,ptr+ size) after the call.
pre(check(c,ptr, [size])) Check that the caller has the (c,ptr, [size]) capability.

pre(check(skb iter(ptr))) Check that the caller has all capabilities returned by the programmer-supplied skb iter function.
pre(if (c-expr)action) Run the specified action if the expression c-expr is true; used for conditional annotations based on return value.

post(if (c-expr)action) LXFI allows c-expr to refer to function arguments, and (for post annotations) to the return value.
principal(p) Use p as the callee principal; in the absence of this annotation, LXFI uses the module’s shared principal.

Figure 3: Examples of LXFI annotations, using the grammar shown in Figure 2, and their semantics.

One complication with LXFI’s pointer-based principal naming
scheme is that a single instance of an module’s abstraction may
have a separate data structure that is used for different interfaces.
For instance, a PCI network device driver may be invoked both by
the network sub-system and by the PCI sub-system. The network
sub-system would use the pointer of the net device structure as
the principal name, and the PCI sub-system would use the pointer
of the pci dev structure for the principal. Even though these two
names may refer to the same logical principal (i.e., a single physical
network card), the names differ.

To address this problem, LXFI separates principals from their
names. This allows a single logical principal to have multiple names,
and LXFI provides a function called lxfi princ alias that a mod-
ule can use to map names to principals. The special values global
and shared can be used as an argument to a principal annotation
to indicate the module’s global and shared principals, respectively.
For example, this can be used for functions that require access to the
entire module’s privileges, such as adding or removing sockets from
a global linked list in econet.

3.4 Annotation example
To give a concrete example of how LXFI’s annotations are used,
consider the interfaces shown in Figure 1, and their annotated ver-
sion in Figure 4. LXFI’s annotations are underlined in Figure 4.
Although this example involves a significant number of annotations,
we specifically chose it to illustrate most of LXFI’s mechanisms.

To prevent modules from arbitrarily enabling PCI devices, the
pci enable device function on line 67 in Figure 4 has a check
annotation that ensures the caller has a REF capability for the corre-
sponding pci dev object. When the module is first initialized for
a particular PCI device, the probe function grants it such a REF
capability (based on the annotation for the probe function pointer
on line 45). Note that if the probe function returns an error code,
the post annotation on the probe function transfers ownership of
the pci dev object back to the caller.

Once the network interface is registered with the kernel, the kernel
can send packets by invoking the ndo start xmit function. The
annotations on this function, on line 60, grant the module access
to the packet, represented by the sk buff structure. Note that the
sk buff structure is a complicated object, including a pointer to a
separate region of memory holding the actual packet payload. To
compute the set of capabilities needed by an sk buff, the program-
mer writes a capability iterator called skb caps that invokes LXFI’s
lxfi cap iterate function on all of the capabilities that make up
the sk buff. This function in turn performs the requested operation
(transfer, in this case) based on the context in which the capability
iterator was invoked. As with the PCI example above, the annota-

tions transfer the granted capabilities back to the caller in case of an
error.

Note that, when the kernel invokes the device driver through
ndo start xmit, it uses the pointer to the net dev structure as the
principal name (line 60), even though the initial PCI probe function
used the pci dev structure’s address as the principal (line 45). To
ensure that the module has access to the same set of capabilities
in both cases, the module developer must create two names for the
corresponding logical principal, one using the pci dev object, and
one using the net device object.

To do this, the programmer modifies the module’s code as shown
in lines 72–73. This code creates a new name, ndev, for an existing
principal with the name pcidev on line 73. The check on line 72
ensures that this code will only execute if the current principal
already has privileges for the pcidev object. This ensures that an
adversary cannot call the module pci probe function with some
other pcidev object and trick the code into setting up arbitrary
aliases to principals. LXFI’s control flow integrity ensures that an
adversary is not able to transfer control flow directly to line 73.
Moreover, only direct control flow transfers to lxfi princ alias
are allowed. This ensures that an adversary cannot invoke this
function by constructing and calling a function pointer at runtime;
only statically defined calls, which are statically coupled with a
preceding check, are allowed.

4 COMPILE-TIME REWRITING

When compiling the core kernel and modules, LXFI uses compiler
plugins to inserts calls and checks into the generated code so that
the LXFI runtime can enforce the annotations for API integrity and
principals. LXFI performs different rewriting for the core kernel
and for modules. Since LXFI assumes that the core kernel is fully
trusted, it can omit most checks for performance. Modules are not
fully trusted, and LXFI must perform more extensive rewriting there.

4.1 Rewriting the core kernel
The only rewriting that LXFI must perform on core kernel code deals
with invocation of function pointers that may have been supplied by a
module. If a module is able to supply a function pointer that the core
kernel will invoke, the module can potentially increase its privileges,
if it tricks the kernel into performing a call that the module itself
could not have performed directly. To ensure this is not the case,
LXFI performs two checks. First, prior to invoking a function pointer
from the core kernel, LXFI verifies that the module principal that
supplied the pointer (if any) had the appropriate CALL capability
for that function. Second, LXFI ensures that the annotations for
the function supplied by the module and the function pointer type
match. This ensures that a module cannot change the effective

120

43 struct pci_driver {
44 int (*probe) (struct pci_dev *pcidev, ...)
45 principal(pcidev)
46 pre(copy(ref(struct pci_dev), pcidev))
47 post(if (return < 0)
48 transfer(ref(struct pci_dev), pcidev));
49 };
50

51 void skb_caps(struct sk_buff *skb) {
52 lxfi_cap_iterate(write, skb, sizeof(*skb));
53 lxfi_cap_iterate(write, skb->data, skb->len);
54 }
55

56 struct net_device_ops {
57 netdev_tx_t (*ndo_start_xmit)
58 (struct sk_buff *skb,
59 struct net_device *dev)
60 principal(dev)
61 pre(transfer(skb_caps(skb)))
62 post(if (return == -NETDEV_BUSY)
63 transfer(skb_caps(skb)))
64 };
65

66 void pci_enable_device(struct pci_dev *pcidev)
67 pre(check(ref(struct pci_dev), pcidev));
68

69 int
70 module_pci_probe(struct pci_dev *pcidev) {
71 ndev = alloc_etherdev(...);
72 lxfi_check(ref(struct pci_dev), pcidev);
73 lxfi_princ_alias(pcidev, ndev);
74 pci_enable_device(pcidev);
75 ndev->dev_ops->ndo_start_xmit = myxmit;
76 netif_napi_add(ndev, napi, my_poll_cb);
77 return 0;
78 }

Figure 4: Annotations for parts of the API shown in Figure 1. The
annotations follow the grammar shown in Figure 2. Annotations and
added code are underlined.

79 handler_func_t handler;
80 handler = device->ops->handler;
81 lxfi_check_indcall(&device->ops->handler);
82 /* not &handler */
83 handler(device);

Figure 5: Rewriting an indirect call in the core kernel. LXFI inserts
checking code with the address of a module-supplied function pointer.

annotations on a function by storing it in a function pointer with
different annotations.

To implement this check, LXFI’s kernel rewriter inserts a call
to the checking function lxfi check indcall(void **pptr,
unsigned ahash) before every indirect call in the core kernel,
where pptr is the address of the module-supplied function pointer
to be called, and ahash is the hash of the annotation for the function
pointer type. The LXFI runtime will validate that the module that
writes function f to pptr has a CALL capability for f . To ensure
that annotations match, LXFI compares the hash of the annotations
for both the function and the function pointer type.

To optimize the cost of these checks, LXFI implements writer-set
tracking. The runtime tracks the set of principals that have been
granted a WRITE capability for each memory location after the last
time that memory location was zeroed. Then, for each indirect-call
check in the core kernel, the LXFI runtime first checks whether
any principal could have written to the function pointer about to
be invoked. If not, the runtime can bypass the relatively expensive
capability check for the function pointer.

To detect the original memory location from which the func-
tion pointer was obtained, LXFI performs a simple intra-procedural
analysis to trace back the original function pointer. For example, as
shown in Figure 5, the core kernel may copy a module-supplied func-
tion pointer device->ops->handler to a local variable handler,
and then make a call using the local variable. In this case LXFI
uses the address of the original function pointer rather than the local
variable for looking up the set of writer principals. We have encoun-
tered 51 cases that our simple analysis cannot deal with, out of 7500
indirect call sites in the core kernel, in which the value of the called
pointer originates from another function. We manually verify that
these 51 cases are safe.

4.2 Rewriting modules
LXFI inserts calls to the runtime when compiling modules based
on annotations from the kernel and module developers. The rest
of this subsection describes the types of instrumentation that LXFI
performs for module C code.

Annotation propagation. To determine the annotations that
should apply to a function, LXFI first propagates annotations on
a function pointer type to the actual function that might instanti-
ate that type. Consider the structure member probe in Figure 4,
which is a function pointer initialized to the module_pci_probe
function. The function should get the annotations on the probe
member. LXFI propagates these annotations along initializations,
assignments, and argument passing in the module’s code, and com-
putes the annotation set for each function. A function can obtain
different annotations from multiple sources. LXFI verifies that these
annotations are exactly the same.

Function wrappers. At compile time, LXFI generates wrappers
for each module-defined function, kernel-exported function, and
indirect call site in the module. At runtime, when the kernel calls
into one of the module’s functions, or when the module calls a kernel-
exported function, the corresponding function wrapper is invoked
first. Based on the annotations, the wrapper sets the appropriate
principal, calls the actions specified in pre annotations, invokes
the original function, and finally calls the actions specified in post
annotations.

The function wrapper also invokes the LXFI runtime at its entry
and exit, so that the runtime can capture all control flow transitions
between the core kernel and the modules. The relevant runtime
routines switch principals and enforce control flow integrity using a
shadow stack, as we detail in the next section (§5).

Module initialization. For each module, LXFI generates an ini-
tialization function that is invoked (without LXFI’s isolation) when
the module is first loaded, to grant an initial set of capabilities to the
module. For each external function (except those functions defined
in LXFI runtime) imported in the module’s symbol table, the ini-
tialization function grants a CALL capability for the corresponding
function wrapper. Note that the CALL capabilities granted to the
module are only for invoking wrappers. A module is not allowed
to call any external functions directly, since that would bypass the
annotations on those functions. For each external data symbol in the
module’s symbol table, the initialization function likewise grants a
WRITE capability. The initial capabilities are granted to the module’s
shared principal, so that they are accessible to every other principal
in the module.

Memory writes. LXFI inserts checking code before each memory
write instruction to make sure that the current principal has the
WRITE capability for the memory region being written to.

121

5 RUNTIME ENFORCEMENT
To enforce the specified API integrity, the LXFI runtime must track
capabilities and ensure that the necessary capability actions are
performed on kernel/module boundaries. For example, before a
module invokes any kernel functions, the LXFI runtime validates
whether the module has the privilege (i.e., CALL capability) to
invoke the function at that address, and if the arguments passed by
the module are safe to make the call (i.e., the pre annotations allow
it). Similarly, before the kernel invokes any function pointer that was
supplied by a module, the LXFI runtime verifies that the module had
the privileges to invoke that function in the first place, and that the
annotations of the function pointer and the invoked function match.
These checks are necessary since the kernel is, in effect, making the
call on behalf of the module.

Figure 6 shows the design of the LXFI runtime. As the reference
monitor of the system, it is invoked on all control flow transitions
between the core kernel and the modules (at instrumentation points
described in the previous section). The rest of this section describes
the operations performed by the runtime.

��������	
��

�������� ����������

��
��
����������
���������������	
����������
���� ���� ��
	� ���

�����
�
	��	������

��
��
����������
��������������� ���� ��
	� ���

�����
�
	��	������

��
����������
�
���� ��
	� ���

�����
�
	��	������

��
	�����	����

��
	�����	
�
	����	���

�����

��
�����
��
���������
�

��	��������

��
��
���

��	��������

����������
��
��
���

�����

���
���������
�
���� ��
	� ���

�����
�
	��	������

��	��������

��
��
���

Figure 6: An overview of the LXFI runtime. Shaded components are
parts of LXFI. Striped components indicate isolated kernel modules.
Solid arrows indicate control flow; the LXFI runtime interposes on all
control flow transfers between the modules and the core kernel. Dotted
arrows indicate metadata tracked by LXFI.

Principals. The LXFI runtime keeps track of the principals for
each kernel module, as well as two special principals. The first is
the module’s shared principal, which is initialized with appropriate
initial capabilities (based on the imports from the module’s symbol
table); every other principal in the module implicitly has access to
the capabilities stored in this principal. The second is the module’s
global principal; it implicitly has access to all capabilities in all of
the module’s principals.

Capability table. For each principal, LXFI maintains three capa-
bility tables (one per capability type), as shown in Figure 6. Effi-
ciently managing capability tables is important to LXFI’s perfor-

mance. LXFI uses a hash table for each table to achieve constant
lookup time. For CALL capabilities and REF capabilities, LXFI uses
function addresses and referred addresses, respectively, as the hash
keys.

WRITE capabilities do not naturally fit within a hash table, be-
cause they are identified by an address range, and capability checks
can happen for any address within the range. To support fast range
tests, LXFI inserts a WRITE capability into all possible hash table
slots covered by its address range. LXFI reduces the number of inser-
tions by masking the least significant bits of the address (the last 12
bits in practice) when calculating hash keys. Since kernel modules
do not usually manipulate memory objects larger than a page (212

bytes), in our experience this data structure performs much better
than a balancing tree, in which a lookup—commonly performed on
WRITE capabilities—takes logarithmic time.

Shadow stack. LXFI maintains a shadow stack for each kernel
thread to record LXFI-specific context. The shadow stack lies adja-
cent to the thread’s kernel stack in the virtual address space, but is
only accessible to the LXFI runtime. It is updated at the entry and
the exit of each function wrapper.

To enforce control flow integrity on function returns, the LXFI
runtime pushes the return address onto the shadow stack at the
wrapper’s entry, and validate its value at the exit to make sure that
the return address is not corrupted. The runtime also saves and
restores the principal on the shadow stack at the wrapper’s entry and
exit.

Writer-set tracking. To optimize the cost of indirect call checks,
LXFI implements light-weight writer-set tracking (as described in
§4.1). LXFI keeps writer set information in a data structure similar
to a page table. The last level entries are bitmaps representing
whether the writer set for a segment of memory is empty or not.
Checking whether the writer set for a particular address is empty
takes constant time. The actual contents of non-empty writer sets
(i.e., what principal has WRITE access to a range of memory) is
computed by traversing a global list of principals. Our experiments
to date have involved a small number of distinct principals, leading
to acceptable performance.

When a module is loaded, that module’s shared principal is added
to the writer set for all of its writable sections (including .data and
.bss), because the section may contain writable function pointers
that the core kernel may try to invoke. The runtime adds additional
entries to the writer set map as the module executes and gains addi-
tional capabilities.

LXFI’s writer-set tracking introduces both false positives and
false negatives. A false positive arises when a WRITE capability
of a function pointer was granted to some module’s principal, but
the principal did not write to the function pointer. This is benign,
since it only introduces an unnecessary capability check. A false
negative arises when the kernel copies pointers from a location that
was modified by a module into its internal data structures, which
were not directly modified by a module. At compile time, LXFI
detects these cases and we manually inspect such false negatives
(see §4.1).

6 USING LXFI
The most important step in enforcing API integrity is specifying
the annotations on kernel/module boundaries. If a programmer
annotates APIs incorrectly, then an adversary may be able to exploit
the mistake to obtain increased privilege. We summarize guidelines
for enforcing API integrity based on our experience annotating 10
modules.

122

Guideline 1. Following the principle of least privilege, grant a
REF capability instead of a WRITE capability whenever possible.
This ensures that a module will be unable to modify the memory
contents of an object, unless absolutely necessary.

Guideline 2. For memory regions allocated by a module, grant
WRITE capabilities to the module, and revoke it from the module on
free. WRITE is needed because the module usually directly writes
the memory it allocates (e.g., for initialization).

Guideline 3. If the module is required to pass a certain fixed value
into a kernel API (e.g., an argument to a callback function, or an
integer I/O port number to inb and outb I/O functions), grant a REF
capability for that fixed value with a special type, and annotate the
function in question (e.g., the callback function, or inb and outb)
to require a REF capability of that special type for its argument.

Guideline 4. When dealing with large data structures, where the
module only needs write access to a small number of the structure’s
members, modify the kernel API to provide stronger API integrity.
For example, the e1000 network driver module writes to only five
(out of 51) fields of sk buff structure. This design requires LXFI
to grant the module a WRITE capability for the sk buff structure.
It would be safer to have the kernel provide functions to change the
necessary fields in an sk buff. Then LXFI could grant the module
a REF capability, perhaps with a special type of sk buff fields,
and have the annotation on the corresponding kernel functions re-
quire a REF capability of type sk buff fields.

Guideline 5. To isolate instances of a module from each other,
annotate the corresponding interface with principal annotations.
The pointer used as the principal name is typically the main data
structure associated with the abstraction, such as a socket, block
device, network interface, etc.

Guideline 6. To manipulate privileges inside of a module, make
two types of changes to the module’s code. First, in order to manip-
ulate data shared between instances, insert a call to LXFI to switch
to the module’s global principal. Second, in order to create princi-
pal aliases, insert a similar call to LXFI’s runtime. In both cases,
the module developer needs to preface these privileged operations
with adequate checks to ensure that the functions containing these
privileged operations are not abused by an adversary at runtime.

Guideline 7. When APIs implicitly transfer privileges between
the core kernel and modules, explicitly add calls from the core kernel
to the module to grant the necessary capabilities. For example, the
Linux network stack supports packet schedulers, represented by a
struct Qdisc object. When the kernel wants to assign a packet
scheduler to a network interface, it simply changes a pointer in
the network interface’s struct net device to point to the Qdisc
object, and expect the module to access it.

7 IMPLEMENTATION
We implemented LXFI for Linux 2.6.36 running on a single-core
x86 64 system. Figure 7 shows the components and the lines of
code for each component. The kernel is compiled using gcc, invok-
ing the kernel rewriting plugin (the kernel rewriter). Modules are
compiled using Clang with the module rewriting plugin (the module
rewriter), since Clang provides a more powerful infrastructure to im-
plement rewriting. The current implementation of LXFI has several
limitations, as follows.

The LXFI rewriter implements an earlier version of the language
defined in §3. Both of the annotation languages can enforce the
common idioms seen in the 10 annotated modules, however we
believe the new language is more succinct. We expect that the

Component Lines of code
Kernel rewriting plugin 150
Module rewriting plugin 1,452
Runtime checker 4,704

Figure 7: Components of LXFI.

language will evolve further as we annotate more interfaces, and
discover other idioms.

The LXFI rewriter does not process assembly code, either in
the core kernel or in modules. We manually inspect the assembly
functions in the core kernel; none of them contains indirect calls.
For modules, instrumentation is required if the assembly performs
indirect calls or direct calls to an external function. In this case, de-
veloper must manually instrument the assembly by inserting calls to
LXFI runtime checker. In our experience, modules use no assembly
code that requires annotation.

LXFI requires all indirect calls in a module to be annotated to
ensure API integrity. However, in some cases, the module rewriter
fails to trace back to the function pointer declaration (e.g., due to an
earlier phase of the compiler that optimized it away). In this case,
developer has to modify the module’s source code (e.g., to avoid
the compiler optimization). For the 10 modules we annotated, such
cases are rare: we changed 18 lines of code.

API integrity requires a complete set of core kernel functions
to be annotated. However, in some cases, the Linux kernel inlines
some kernel functions into modules. One approach is to annotate the
inlined function, and let the module rewriter disable inlining of such
functions. This approach, however, obscures the security boundary
because these function are defined in the module, but must be treated
the same as a kernel function. LXFI requires the boundary between
kernel and module to be in one location by making either all or none
of the functions inlined. In our experience, we have found that Linux
is already well-written in this regard, and we had to change less than
10 functions (by not inlining them into a module) to enforce API
integrity on 10 modules.

As pointed out in § 4.1, for indirect calls performed by the core
kernel, LXFI checks that the annotation on function pointer matches
the annotation on the invoked function f. Current implementation
of LXFI performs checks when f has annotations, such as module
functions that exported to kernel through assignment. A more strict
and safe check is to enforce that f has annotations. Such check is not
implemented because when f is defined in the core kernel, f may
be static and has no annotation. We plan to implement annotation
propagation in the kernel rewriter to solve this problem.

8 EVALUATION
This section evaluates the following 4 questions experimentally:

• Can LXFI stop exploits of kernel modules that have led to
privilege escalation?

• How much work is required to annotate kernel/module inter-
faces?

• How much does LXFI slow down the SFI microbenchmarks?

• How much does LXFI slow down a Linux kernel module?

8.1 Security
To answer the first question we inspected 3 privilege escalation
exploits using 5 vulnerabilities in Linux kernel modules revealed
in 2010 that can lead to privilege escalation. Figure 8 shows three
exploits and the corresponding vulnerabilities. LXFI successfully
prevents all of the listed exploits as follows.

123

Exploit CVE ID Vulnerability type Source location
CAN BCM [17] CVE-2010-2959 Integer overflow net/can/bcm.c

Econet [18]
CVE-2010-3849 NULL pointer dereference net/econet/af econet.c
CVE-2010-3850 Missed privilege check net/econet/af econet.c
CVE-2010-4258 Missed context resetting kernel/exit.c

RDS [19] CVE-2010-3904 Missed check of user-supplied pointer net/rds/page.c

Figure 8: Linux kernel module vulnerabilities that result in 3 privilege escalation exploits, all of which are prevented by LXFI.

CAN BCM. Jon Oberheide posted an exploit to gain root priv-
ilege by exploiting an integer overflow vulnerability in the Linux
CAN BCM module [17]. The overflow is in the bcm rx setup func-
tion, which is triggered when the user tries to send a carefully crafted
message through CAN BCM. In particular, bcm rx setup allocates
nframes*16 bytes of memory from a slab, where nframes is sup-
plied by user. By passing a large value, the allocation size overflows,
and the module receives less memory than it asked for. This allows
an attacker to write an arbitrary value into the slab object that di-
rectly follows the objects allocated to CAN BCM. In the posted exploit,
the author first arranges the kernel to allocate a shmid kernel slab
object at a memory location directly following CAN BCM’s under-
sized buffer. Then the exploit overwrites this shmid kernel object
through CAN BCM, and finally, tricks the kernel into calling a function
pointer that is indirectly referenced by the shmid kernel object,
leading to a root privilege escalation.

To test the exploit against LXFI, we ported Oberheide’s exploit
from x86 to x86 64, since it depends on the size of pointer. LXFI
prevents this exploit as follows. When the allocation size overflows,
LXFI will grant the module a WRITE capability for only the number
of bytes corresponding to the actual allocation size, rather than what
the module asked for. When the module tries to write to an adjacent
object in the same slab, LXFI detects that the module has no WRITE
capability and raises an error.

Econet. Dan Rosenburg posted a privilege escalation exploit [18]
by taking advantage of three vulnerabilities found by Nelson El-
hage [8]. Two of them lie in the Econet module, and one in the core
kernel. The two Econet vulnerabilities allow an unprivileged user
to trigger a NULL pointer dereference in Econet. It is triggered
when the kernel is temporarily in a context in which the kernel’s
check of a user-provided pointer is omitted, which allows a user to
write anywhere in kernel space.

To prevent such vulnerabilities, the core kernel should always
reset the context so that the check of a user-provided pointer is
enforced. Unfortunately, kernel’s do exit failed to obey this rule.
do exit is called to kill a process when a NULL pointer deref-
erence is captured in the kernel. Moreover, the kernel writes a
zero into a user provided pointer (task->clear child tid) in
do exit. Along with the NULL pointer dereference triggered by the
Econet vulnerabilities, the attacker is able to write a zero into an ar-
bitrary kernel space address. By carefully arranging the kernel mem-
ory address for task->clear child tid, the attacker redirects
econet ops.ioctl to user space, and then gains root privilege in
the same way as the RDS exploit. LXFI prevents the exploit by stop-
ping the kernel from calling the indirect call of econet ops.ioctl
after it is overwritten with an illegal address.

RDS. Dan Rosenburg reported a vulnerability in the Linux RDS
module in CVE-2010-3904 [19]. It is caused by a missing check of
a user-provided pointer in the RDS page copying routine, allowing
a local attacker to write arbitrary values to arbitrary memory loca-
tions. The vulnerability can be triggered by sending and receiving
messages over a RDS socket. In the reported exploit, the attacker
overwrites the rds proto ops.ioctl function pointer defined in
the RDS module with the address of a user-space function. Then

it tricks the kernel to indirectly call the rds proto ops.ioctl by
invoking the ioctl system call. As a result, the local attacker can
execute his own code in kernel space.

LXFI prevents the exploit in two ways. First, LXFI does not
grant WRITE capabilities for a module’s read-only section to the
module (the Linux kernel does). Thus, the exploit cannot overwrite
rds proto ops.ioctl in the first place, since it is declared in a
read-only structure. To see if LXFI can defend against vulnerabilities
that allow corrupting a writable function pointer, we made this mem-
ory location writable. LXFI is able to prevent the exploit, because
it checks the core kernel’s indirect call to rds proto ops.ioctl.
The LXFI runtime detects that the function pointer is writable by
the RDS module, and then it checks if RDS has a CALL capability
for the target function. The LXFI runtime rejects the indirect call
because RDS module has no CALL capability for invoking a user-
space function. It is worth mentioning that the LXFI runtime would
also reject the indirect call if the user overwrites the function pointer
with a core kernel function that the module does not have a CALL
capability for.

Other exploits. Vulnerabilities leading to privilege escalation are
harmful. The attacker can typically mount other types of attacks ex-
ploiting the same vulnerabilities. For example, it can be used to hide
a rootkit. The Linux kernel uses a hash table (pid hash) for process
lookup. If a rootkit deletes a process from the hash table, the process
will not be listed by ps’ shell command, but will still be scheduled
to run. Without LXFI, a rootkit can exploit the above vulnerability
in RDS to unlink itself from the pid list hash table. Using the
same technique as in the RDS exploit, we developed an exploit that
successfully hides the exploiting process. The exploit runs as an
unprivileged user. It overwrites rds proto ops.ioctl to point
to a user space function. When the vulnerability is triggered, the
core kernel calls the user space function, which calls detach pid
with current task (both are exported kernel symbols). As before,
LXFI prevents the vulnerability by disallowing the core kernel from
invoking the function pointer into user-space code, because the RDS
module has no CALL capability for that code. Even if the module
overwrites the rds proto ops.ioctl function pointer to point di-
rectly to detach pid, LXFI still prevents this exploit, because the
RDS module does not have a CALL capability for detach pid.

8.2 Annotation effort
To evaluate the work required to specify contracts for kernel/module
APIs, we annotated 10 modules. These modules include several
device categories (network, sound, and block), different devices
within a category (e.g., two sound devices), and abstract devices (e.g.,
network protocols). The difficult part in annotating is understanding
the interfaces between the kernel and the module, since there is
little documentation. We typically follow an iterative process: we
annotate the obvious parts of the interfaces, and try to run the module
under LXFI. When running the module, the LXFI runtime raises
alerts because the module attempts operations that LXFI forbids. We
then iteratively go through these alerts, understand what the module
is trying to do, and annotate interfaces appropriately.

124

Category Module # Functions # Function Pointers
all unique all unique

net device driver e1000 81 49 52 47

sound device driver snd-intel8x0 59 27 12 2
snd-ens1370 48 13 12 2

net protocol driver

rds 77 30 42 26
can 53 7 7 3
can-bcm 51 15 17 1
econet 54 15 20 3

block device driver
dm-crypt 50 24 24 14
dm-zero 6 3 2 0
dm-snapshot 55 16 28 18

Total 334 155

Figure 9: The numbers of annotated function prototypes and function pointers for 10 modules. An annotation is considered unique if it is used by
only one module. The Total row reports the total number of distinct annotations.

To quantify the work involved, we count the number of annota-
tions required to support a kernel module. The number of annota-
tions needed for a given module is determined by the number of
functions (either defined in the core kernel or other modules) that the
module invokes directly, and the number of function pointers that
the core kernel and the module call. As Figure 9 shows, each module
calls 6–81 functions directly, and is called by (or calls) 7–52 function
pointers. For each module, the number of functions and function
pointers that need annotating is much smaller. For example, support-
ing the can module only requires annotating 7 extra functions after
all other modules listed in Figure 9 are annotated. The reason is that
similar modules often invoke the same set of core kernel functions,
and that the core kernel often invokes module functions in the same
way across multiple modules. For example, the interface of the PCI
bus is shared by all PCI devices. This suggests that the effort to
support a new module can be small as more modules are supported
by LXFI.

Some functions require checking, copying, or transferring a
large number of capabilities. LXFI’s annotation language supports
programmer-defined capability iterators for this purpose, such as
skb caps for handling all of the capabilities associated with an
sk buff shown in Figure 4. In our experience, most annotations are
simple, and do not require capability iterators. For the 10 modules,
we wrote 36 capability iterators to handle idioms such as for loops
or nested data structures. Each module required 3-11 capability
iterators.

A second factor that affects the annotation effort is the rate of
change of Linux kernel interfaces. We have inspected Linux kernel
APIs for 20 major versions of the kernel, from 2.6.20 to 2.6.39, by
counting the numbers of both functions that are directly exported
from the core kernel and function pointers that appear in shared
data structures using ctags. Figure 10 shows our findings. The
results indicate that, although the number of kernel interfaces grows
steadily, the number of interfaces changed with each kernel version
is relatively modest, on the order of several hundred functions. This
is in contrast to the total number of lines of code changed between
major kernel versions, which is on the order of several hundred
thousand lines of code.

8.3 Microbenchmarks
To measure the enforcement overhead, we measure how much LXFI
slows down the SFI microbenchmarks [23]. To run the tests, we turn
each benchmark into a Linux kernel module. We run the tests on a
desktop equipped with an Intel(R) Core(TM) i3-550 3.2 GHz CPU,
6GB memory, and an Intel 82540EM Gigabit Ethernet card. For
these benchmarks, we might expect a slightly higher overhead than
XFI because the stack optimizations used in SFI are not applicable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

2.6.21(04/07)

2.6.25(04/08)

2.6.29(03/09)

2.6.34(05/10)

2.6.39(05/11)

N
um

be
r o

f e
xp

or
te

d
fu

nc
tio

ns
 /

fu
nc

 p
tr

s

Linux kernel version (release month/year)

exported functions
changed from prev. version
function ptrs in structs
changed from prev. version

Figure 10: Rate of change for Linux kernel APIs, for kernel versions
2.6.21 through 2.6.39. The top curve shows the number of total and
changed exported kernel functions; for example, 2.6.21 had a total of
5,583 exported functions, of which 272 were new or changed since
2.6.20. The bottom curve shows the number of total and changed func-
tion pointers in structs; for example, 2.6.21 had a total of 3,725 function
pointers in structs, of which 183 were new or changed since 2.6.20.

to Linux kernel modules, but on the other hand LXFI, like BGI, uses
a compile-time approach to instrumentation, which provides oppor-
tunities for compile-time optimizations. We cannot compare directly
to BGI because it targets the Windows kernel and no numbers were
reported for the SFI microbenchmarks, but we would expect BGI to
be faster than LXFI, because BGI’s design carefully optimizes the
runtime data structures to enable low-overhead checking.

Benchmark ∆ code size Slowdown
hotlist 1.14× 0%
lld 1.12× 11%
MD5 1.15× 2%

Figure 11: Code size and slowdown of the SFI microbenchmarks.

Figure 11 summarizes the results from the measurements. We
compare our result with the slowpath write-only overhead in XFI
(Table 1 in [9]). For all benchmarks, the code size is 1.1x-1.2x larger
with LXFI instrumentation, while with XFI the code size is 1.1x-
3.9x larger. We believe that LXFI’s instrumentation inserts less code

125

Test Throughput CPU %
Stock LXFI Stock LXFI

TCP STREAM TX 836 M bits/sec 828 M bits/sec 13% 48%
TCP STREAM RX 770 M bits/sec 770 M bits/sec 29% 64%
UDP STREAM TX 3.1 M/3.1 M pkt/sec 2.0 M/2.0 M pkt/sec 54% 100%
UDP STREAM RX 2.3 M/2.3 M pkt/sec 2.3 M/2.3 M pkt/sec 46% 100%
TCP RR 9.4 K Tx/sec 9.4 K Tx/sec 18% 46%
UDP RR 10 K Tx/sec 8.6 K Tx/sec 18% 40%
TCP RR (1-switch latency) 16 K Tx/sec 9.8 K Tx/sec 24% 43%
UDP RR (1-switch latency) 20 K Tx/sec 10 K Tx/sec 23% 47%

Figure 12: Performance of netperf benchmark with stock and LXFI enabled e1000 driver.

because LXFI does not employ fastpath checks (inlining memory-
range tests for the module’s data section to handle common cases [9])
as XFI does. Moreover, LXFI targets x86 64, which provides more
registers, allowing the inserted instructions to be shorter.

Like XFI, LXFI adds almost no overhead for hotlist, because
hotlist performs mostly read-only operations over a linked list,
which LXFI does not instrument.

The performance of lld under LXFI (11% slowdown) is much
better than for XFI (93% slowdown). This is because the code of
lld contains a few trivial functions, and LXFI’s compiler plugin
effectively inlined them, greatly reducing the number of guards at
function entries and exits. In contrast, XFI uses binary rewriting
and therefore is unable to perform this optimization. Since BGI also
uses a compiler plug-in, we would expect BGI to do as well or better
than LXFI.

The slowdown of MD5 is also negligible (2% compared with 27%
for XFI). oprofile shows that most of the memory writes in MD5
target a small buffer, residing in the module’s stack frame. By ap-
plying optimizations such as inlining and loop unrolling, LXFI’s
compiler plugin detects that these writes are safe because they op-
erate on constant offsets within the buffer’s bound, and can avoid
inserting checks. Similar optimizations are difficult to implement
in XFI’s binary rewriting design, but BGI again should be as fast or
faster than LXFI.

8.4 Performance
To evaluate the overhead of LXFI on an isolated kernel module, we
run netperf [14] to exercise the Linux e1000 driver as a kernel
module. We run LXFI on the same desktop described in §8.3. The
other side of the network connection runs stock Linux 2.6.35 SMP
on a desktop equipped with an Intel(R) Core(TM) i7-980X 3.33 GHz
CPU, 24 GB memory, and a Realtek RTL8111/8168B PCIE Gigabit
Ethernet card. The two machines are connected via a switched
Gigabit network. In this section, “TX” means that the machine
running LXFI sends packets, and “RX” means that the machine
running LXFI receives packets from the network.

Figure 12 shows the performance of netperf. Each test runs for
10 seconds. The “CPU %” column reports the CPU utilization on
the desktop running LXFI. The first test, TCP STREAM, measures
the TCP throughput of the e1000 driver. The test uses a send buffer
of 16,384 bytes, and a receive buffer of 87,370 bytes. The message
size is 16,384 bytes. As shown in Figure 12, for both “TX” and “RX”
workloads, LXFI achieves the same throughput as the stock e1000
driver; the CPU utilization increases by 3.7× and 2.2× with LXFI,
respectively, because of the added cost of capability operations.

UDP STREAM measures UDP throughput. The UDP socket size
is 126,976 bytes on the send side, and 118,784 bytes on the receive
side. The test sends messages of 64 bytes. The two performance
numbers report the number of packets that get sent and received.
LXFI achieves 65% of the throughput of the stock version for TX,
and achieves the same throughput for RX. The LXFI version cannot

achieve the same throughput for TX because the CPU utilization
reaches 100%, so the system cannot generate more packets. We
expect that using a faster CPU would improve the throughput for
TX (although the CPU overhead would remain high).

We run TCP RR and UDP RR to measure the impact of LXFI on
latency, using the same message size, send and receive buffer sizes
as above. We conducted two tests, each with a different network
configuration.

In the first configuration, the two machines are connected the
same subnet, and there are a few switches between them (but no
routers). As shown in the middle rows of Figure 12, with LXFI, the
throughput of TCP RR is almost the same as the stock version, and
the CPU utilization increases by 2.6×. For UDP RR, the throughput
decreases by 14%, and the CPU utilization increases by 2.2×.

Part of the latency observed in the above test comes from the
network switches connecting the two machines. To understand how
LXFI performs in a configuration with lower network latency, we
connect the two machines to a dedicated switch and run the test
again. As Figure 12 shows, the CPU utilization and the throughput
increase for both versions. The relative overhead of LXFI increases
because the network latency is so low that the processing of the next
incoming packets are delayed by capability actions, slowing down
the rate of packets received per second. We expect that few real
systems use a network with such low latencies, and LXFI provides
good throughput when even a small amount of latency is available
for overlap.

Guard type Guards Time per Time per
per pkt guard (ns) pkt (ns)

Annotation action 13.5 124 1,674
Function entry 7.1 16 114
Function exit 7.1 14 99
Mem-write check 28.8 51 1,469
Kernel ind-call all 9.2 64 589
Kernel ind-call e1000 3.1 86 267

Figure 13: Average number of guards executed by the LXFI runtime
per packet, the average cost of each guard, and the total time spent in
runtime guards per packet for UDP STREAM TX benchmark.

To understand the sources of LXFI’s overheads, we measure the
average number of guards per packet that the LXFI runtime executes,
and the average time for each guard. We report the numbers for the
UDP STREAM TX benchmark, because LXFI performs worst for
this workload (not considering the 1-switch network configuration).
Figure 13 shows the results. As expected, LXFI spends most of the
time performing annotation actions (grant, revoke, and check), and
checking permissions for memory writes. Both of them are the most
frequent events in the system. “Kernel ind-call all” and “Kernel ind-
call e1000” show that the core kernel performs 9.2 indirect function
calls per packet, around 1/3 of which are calls to the e1000 driver
that involve transmitting packets. This suggests that our writer-set

126

tracking optimization is effective at eliminating 2/3 of checks for
indirect function calls.

8.5 Discussion
The results suggests that LXFI works well for the modules that
we annotated. The amount of work to annotate is modest, requir-
ing 8–133 annotations per module, including annotations that are
shared between multiple modules. Instrumenting a network driver
with LXFI increases CPU usage by 2.2–3.7×, and achieves the same
TCP throughput as an unmodified kernel. However, UDP throughput
drops by 35%. It is likely that we can use design ideas for runtime
data structures from BGI to reduce the overhead of checking. In
terms of security, LXFI is less beneficial to modules that must per-
form privileged operations; an adversary who compromises such a
module will be able to invoke the privileged operation that the mod-
ules is allowed to perform. It would be interesting to explore how to
refactor such modules to separate privileges. Finally, some modules
have complicated semantics and the LXFI annotation language is
not rich enough; for example, file systems have setuid and file per-
mission invariants that are difficult to capture with LXFI annotations.
We would like to explore how to increase LXFI’s applicability in
future work.

9 RELATED WORK
LXFI is inspired by XFI [9] and BGI [4]. XFI, BGI, and LXFI use
SFI [26] to isolate modules. XFI assumes that the interface between
the module and the support interface is simple and static, and does
not handle overly permissive support functions. BGI extends XFI to
handle more complex interfaces by manually interposing on every
possible interaction between the kernel and module, and uses access
control lists to restrict the operations a module can perform. Manual
interposition for BGI is feasible because the Windows Driver Model
(WDM) only allows drivers to access kernel objects, or register
callbacks, through well-defined APIs. In contrast, the Linux kernel
exposes its internal data objects to module developers. For example,
a buggy module may overwrite function pointers in the kernel object
to trick the kernel into executing arbitrary code. To provide API
integrity for these complex interfaces, LXFI provides a capability
and annotation system that programmers can use to express the
necessary contracts for API integrity. LXFI’s capabilities are dual to
BGI’s access control lists. Another significant difference between
LXFI and BGI is LXFI’s support for principals to partition the
privileges held by a shared module. Finally, LXFI shows that it can
prevent real and synthesized attacks, whereas the focus of BGI is
high-performance fault isolation.

Mondrix [27] shows how to implement fault isolation for several
parts of the Linux kernel, including the memory allocator, several
drivers, and the Unix domain socket module. Mondrix relies on
specialized hardware not available in any processor today, whereas
LXFI uses software-based techniques to run on commodity x86 pro-
cessors. Mondrix also does not protect against malicious modules,
which drives much of LXFI’s design. For example, malicious kernel
modules in Mondrix can invoke core kernel functions with incorrect
arguments, or simply reload the page table register, to take over the
entire kernel.

Loki [28] shows how to privilege-separate the HiStar kernel into
mutually distrustful “library kernels”. Loki’s protection domains
correspond to user or application protection domains (defined by
HiStar labels), in contrast with LXFI’s domains which are defined by
kernel component boundaries. Loki relies on tagged memory, and
also relies on HiStar’s simple kernel design, which has no complex
subsystems like network protocols or sound drivers in Linux that
LXFI supports.

Full formal verification along the lines of seL4 [15] is not practical
for Linux, both because of its complexity, and because of its ill-
defined specification. It may be possible to use program analysis
techniques to check some limited properties of LXFI itself, though,
to ensure that an adversary cannot subvert LXFI.

Driver isolation techniques such as Sud [3], Termite [21],
Dingo [20], and Microdrivers [10] isolate device drivers at user-level,
as do microkernels [7, 11]. This requires significantly re-designing
the kernel interface, or restricting user-mode drivers to well-defined
interfaces that are amenable to expose through IPC. Many kernel
subsystems, such as protocol modules like RDS, make heavy use
of shared memory that would not work well over IPC. Although
there has been a lot of interest in fault containment in the Linux
kernel [16, 24], fault tolerance is a weaker property than stopping
attackers.

A kernel runtime that provides type safety and capabilities by
default, such as Singularity [13], can provide strong API contracts
similar to LXFI. However, most legacy OSes including Linux cannot
benefit from it since they are not written in a type-safe language like
C#.

SecVisor [22] provides kernel code integrity, but does not guaran-
tee data protection or API integrity. As a result, code integrity alone
is not enough to prevent privilege escalation exploits. OSck [12]
detects kernel rootkits by enforcing type safety and data integrity for
operating system data at hypervisor level, but does not address API
safety and capability issues among kernel subsystems.

Overshadow [6] and Proxos [25] provide security by interposing
on kernel APIs from a hypervisor. The granularity at which these
systems can isolate features is more coarse than with LXFI; for
example, Overshadow can just interpose on the file system, but not
on a single protocol module like RDS. Furthermore, techniques
similar to LXFI would be helpful to prevent privilege escalation
exploits in the hypervisor’s kernel.

10 CONCLUSION
This paper presents an approach to help programmers capture and
enforce API integrity of complex, irregular kernel interfaces like the
ones found in Linux. LXFI introduces capabilities and annotations to
allow programmers to specify these rules for any given interface, and
uses principals to isolate privileges held by independent instances of
the same module. Using software fault isolation techniques, LXFI
enforces API integrity at runtime. Using a prototype of LXFI for
Linux, we instrumented a number of kernel interfaces with complex
contracts to run 10 different kernel modules with strong security
guarantees. LXFI succeeds in preventing privilege escalation attacks
through 5 known vulnerabilities, and imposes moderate overhead
for a network-intensive benchmark.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Sam King, for
their feedback. This research was partially supported by the DARPA
Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH)
program under contract #N66001-10-2-4089, by the DARPA UHPC
program, and by NSF award CNS-1053143. Dong Zhou was sup-
ported by China 973 program 2007CB807901 and NSFC 61033001.
The opinions in this paper do not necessarily represent DARPA or
official US policy.

REFERENCES
[1] Common vulnerabilities and exposures. From
http://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=linux+kernel+2010.

127

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+2010
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+2010

[2] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage,
G. Thomas, and A. Kaseorg. Security impact ratings con-
sidered harmful. In Proceedings of the 12th Workshop on Hot
Topics in Operating Systems, Monte Verita, Switzerland, May
2009.

[3] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the 2010 USENIX
Annual Technical Conference, pages 117–130, Boston, MA,
June 2010.

[4] M. Castro, M. Costa, J. P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT,
October 2009.

[5] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek. Linux kernel vulnerabilities: State-of-the-art de-
fenses and open problems. In Proceedings of the 2nd Asia-
Pacific Workshop on Systems, Shanghai, China, July 2011.

[6] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Over-
shadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In Proceedings of
the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, Seattle,
WA, March 2008.

[7] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Camp-
bell. CuriOS: Improving reliability through operating system
structure. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation, San Diego, CA, Decem-
ber 2008.

[8] N. Elhage. CVE-2010-4258: Turning denial-of-service into
privilege escalation. http://blog.nelhage.com/2010/
12/cve-2010-4258-from-dos-to-privesc/, December
2010.

[9] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In
Proceedings of the 7th Symposium on Operating Systems De-
sign and Implementation, Seattle, WA, November 2006.

[10] V. Ganapathy, M. Renzelmann, A. Balakrishnan, M. Swift, and
S. Jha. The design and implementation of microdrivers. In
Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Seattle, WA, March 2008.

[11] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum.
Fault isolation for device drivers. In Proceedings of the 2009
IEEE Dependable Systems and Networks Conference, Lisbon,
Portugal, June–July 2009.

[12] O. Hofmann, A. Dunn, S. Kim, I. Roy, and E. Witchel. En-
suring operating system kernel integrity with OSck. In Pro-
ceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Newport Beach, CA, March 2011.

[13] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fahndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An overview
of the Singularity project. Technical Report MSR-TR-2005-
135, Microsoft, Redmond, WA, October 2005.

[14] R. Jones. Netperf: A network performance benchmark, version
2.45. http://www.netperf.org.

[15] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolan-
ski, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT,
October 2009.

[16] A. Lenharth, V. S. Adve, and S. T. King. Recovery domains:
An organizing principle for recoverable operating systems. In
Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 49–60, Washington, DC, March 2009.

[17] J. Oberheide. Linux kernel CAN SLUB overflow.
http://jon.oberheide.org/blog/2010/09/10/

linux-kernel-can-slub-overflow/, September 2010.
[18] D. Rosenberg. Econet privilege escalation exploit.

http://thread.gmane.org/gmane.comp.security.

full-disclosure/76457, December 2010.
[19] D. Rosenberg. RDS privilege escalation exploit.

http://www.vsecurity.com/download/tools/

linux-rds-exploit.c, October 2010.
[20] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming

device drivers. In Proceedings of the ACM EuroSys Conference,
Nuremberg, Germany, March 2009.

[21] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser. Auto-
matic device driver synthesis with Termite. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles,
Big Sky, MT, October 2009.

[22] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles, Stevenson, WA, October
2007.

[23] C. Small and M. I. Seltzer. Misfit: Constructing safe extensible
systems. IEEE Concurrency, 6:34–41, 1998.

[24] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. ACM Transactions
on Computer Systems, 22(4), November 2004.

[25] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Mak-
ing trust between applications and operating systems config-
urable. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, pages 279–292, Seattle,
WA, November 2006.

[26] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In Proceedings of the
14th ACM Symposium on Operating Systems Principles, pages
203–216, Asheville, NC, December 1993.

[27] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory
isolation for Linux using Mondriaan memory protection. In
Proceedings of the 20th ACM Symposium on Operating Sys-
tems Principles, Brighton, UK, October 2005.

[28] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hard-
ware enforcement of application security policies. In Proceed-
ings of the 8th Symposium on Operating Systems Design and
Implementation, pages 225–240, San Diego, CA, December
2008.

128

http://blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc/
http://blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc/
http://www.netperf.org
http://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
http://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
http://thread.gmane.org/gmane.comp.security.full-disclosure/76457
http://thread.gmane.org/gmane.comp.security.full-disclosure/76457
http://www.vsecurity.com/download/tools/linux-rds-exploit.c
http://www.vsecurity.com/download/tools/linux-rds-exploit.c

	Introduction
	Goal and problem
	Privileges in shared modules
	Lack of API integrity
	Threat model

	Annotations
	Principals
	Capabilities
	Interface annotations
	Annotation example

	Compile-time rewriting
	Rewriting the core kernel
	Rewriting modules

	Runtime enforcement
	Using LXFI
	Implementation
	Evaluation
	Security
	Annotation effort
	Microbenchmarks
	Performance
	Discussion

	Related work
	Conclusion

