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ABSTRACT
Multithreaded programming is notoriously difficult to get right. A key problem is non-determinism,
which complicates debugging, testing, and reproducing errors. One way to simplify multithreaded
programming is to enforce deterministic execution, but current deterministic systems for C/C++ are
incomplete or impractical. These systems require program modification, do not ensure determinism
in the presence of data races, do not work with general-purpose multithreaded programs, or run up to
8.4× slower than pthreads.

This paper presents DTHREADS, an efficient deterministic multithreading system for unmodified
C/C++ applications that replaces the pthreads library. DTHREADS enforces determinism in the
face of data races and deadlocks. DTHREADS works by exploding multithreaded applications into
multiple processes, with private, copy-on-write mappings to shared memory. It uses standard virtual
memory protection to track writes, and deterministically orders updates by each thread. By separating
updates from different threads, DTHREADS has the additional benefit of eliminating false sharing.
Experimental results show that DTHREADS substantially outperforms a state-of-the-art deterministic
runtime system, and for a majority of the benchmarks evaluated here, matches and occasionally
exceeds the performance of pthreads.

1. INTRODUCTION
The advent of multicore architectures has increased the demand for multithreaded programs, but
writing them remains painful. It is notoriously far more challenging to write concurrent programs
than sequential ones because of the wide range of concurrency errors, including deadlocks and race
conditions [16, 20, 21]. Because thread interleavings are non-deterministic, different runs of the
same multithreaded program can unexpectedly produce different results. These “Heisenbugs” greatly
complicate debugging, and eliminating them requires extensive testing to account for possible thread
interleavings [2, 11].

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.



Instead of testing, one promising alternative approach is to attack the problem of concurrency bugs
by eliminating its source: non-determinism. A fully deterministic multithreaded system would pre-
vent Heisenbugs by ensuring that executions of the same program with the same inputs always yield
the same results, even in the face of race conditions in the code. Such a system would not only dra-
matically simplify debugging of concurrent programs [13] and reduce testing overhead, but would
also enable a number of other applications. For example, a deterministic multithreaded system would
greatly simplify record and replay for multithreaded programs by eliminating the need to track me-
mory operations [14, 19], and it would enable the execution of multiple replicas of multithreaded
applications for fault tolerance [4, 7, 10, 23].

Several recent software-only proposals aim at providing deterministic multithreading for C/C++ pro-
grams, but these suffer from a variety of disadvantages. Kendo ensures determinism of synchro-
nization operations with low overhead, but does not guarantee determinism in the presence of data
races [22]. Grace prevents all concurrency errors but is limited to fork-join programs. Although
it can be efficient, it often requires code modifications to avoid large runtime overheads [6]. Core-
Det, a compiler and runtime system, enforces deterministic execution for arbitrary multithreaded
C/C++ programs [3]. However, it exhibits prohibitively high overhead, running up to 8.4× slower
than pthreads (see Section 6) and generates thread interleavings at arbitrary points in the code,
complicating program debugging and testing.

Contributions
This paper presents DTHREADS, a deterministic multithreading (DMT) runtime system with the
following features:

• DTHREADS guarantees deterministic execution of multithreaded programs even in the presence
of data races. Given the same sequence of inputs or OS events, a program using DTHREADS
always produces the same output.

• DTHREADS is straightforward to deploy: it replaces the pthreads library, requiring no re-
compilation or code changes.

• DTHREADS is robust to changes in inputs, architectures, and code, enabling printf debug-
ging of concurrent programs.

• DTHREADS eliminates cache-line false sharing, a notorious performance problem for multi-
threaded applications.

• DTHREADS is efficient. It nearly matches or even exceed the performance of pthreads for
the majority of the benchmarks examined here.

DTHREADS works by exploding multithreaded applications into multiple processes, with private,
copy-on-write mappings to shared memory. It uses standard virtual memory protection to track
writes, and deterministically orders updates by each thread. By separating updates from different
threads, DTHREADS has the additional benefit of eliminating false sharing.

Our key insight is counterintuitive: the runtime costs and benefits of DTHREADS’ mechanisms (pro-
cesses, protection faults, copying and diffing, and false sharing elimination) balance out, for the ma-
jority of applications we evaluate here, the costs and benefits of pthreads (threads, no protection
faults, and false sharing).

By committing changes only when needed, DTHREADS amortizes most of its costs. For example,
because it only uses virtual memory protection to track the first write to a page, DTHREADS amortizes
the cost of a fault over the length of a transaction.



DTHREADS provides deterministic execution while performing as well as or even better than pthreads
for the majority of applications examined here, including much of the PARSEC benchmark suite (de-
signed to be representative of next-generation shared-memory programs for chip-multiprocessors).
DTHREADS isn’t suitable for all applications: DTHREADS intercepts communication using the pthreads
API, so programs using ad-hoc synchronization will not work with DTHREADS. Other application
characteristics make it impossible for DTHREADS to amortize the costs of isolation and synchroniza-
tion, resulting in poor performance. Despite these and other limitations, which we discuss in-depth
in Section 7.2, DTHREADS still outperforms the previous state-of-the-art deterministic system by
between 14% and 11.2× when evaluated using 14 parallel benchmarks.

DTHREADS marks a significant advance over the state of the art in deployability and performance, and
provides promising evidence that fully deterministic multithreaded programming may be practical.

2. RELATED WORK
The area of deterministic multithreading has seen considerable recent activity. Due to space limita-
tions, we focus here on software-only, non language-based approaches.

Grace prevents a wide range of concurrency errors, including deadlocks, race conditions, ordering
and atomicity violations by imposing sequential semantics on threads with speculative execution [6].
DTHREADS borrows Grace’s threads-as-processes paradigm to provide memory isolation, but differs
from Grace in terms of semantics, generality, and performance.

Because it provides the effect of a serial execution of all threads, one by one, Grace rules out all
interthread communication, including updates to shared memory, condition variables, and barriers.
Grace supports only a restricted class of multithreaded programs: fork-join programs (limited to
thread create and join). Unlike Grace, DTHREADS can run most general-purpose multithreaded pro-
grams while guaranteeing deterministic execution.

DTHREADS enables far higher performance than Grace for several reasons: It deterministically re-
solves conflicts, while Grace must rollback and re-execute threads that update any shared pages (re-
quiring code modifications to avoid serialization); DTHREADS prevents false sharing while Grace
exacerbates it; and DTHREADS imposes no overhead on reads.

CoreDet is a compiler and runtime system that represents the current state-of-the-art in determinis-
tic, general-purpose software multithreading [3]. It uses alternating parallel and serial phases, and
a token-based global ordering that we adapt for DTHREADS. Like DTHREADS, CoreDet guarantees
deterministic execution in the presence of races, but with different mechanisms that impose a far
higher cost: on average 3.5× slower and as much as 11.2× slower than DTHREADS (see Section 6).
The CoreDet compiler instruments all reads and writes to memory that it cannot prove by static anal-
ysis to be thread-local. CoreDet also serializes all external library calls, except for specific variants
provided by the CoreDet runtime.

CoreDet and DTHREADS also differ semantically. DTHREADS only allows interleavings at synchro-
nization points, but CoreDet relies on the count of instructions retired to form quanta. This approach
makes it impossible to understand a program’s behavior by examining the source code—the only way
to know what a program does in CoreDet (or dOS and Kendo, which rely on the same mechanism)
is to execute it on the target machine. This instruction-based commit schedule is also brittle: even
small changes to the input or program can cause a program to behave differently, effectively ruling
out printf debugging. DTHREADS uses synchronization operations as boundaries for transactions,
so changing the code or input does not affect the schedule as long as the sequence of synchronization
operations remains unchanged. We call this more stable form of determinism robust determinism.

dOS [4] is an extension to CoreDet that uses the same deterministic scheduling framework. dOS
provides deterministic process groups (DPGs), which eliminate all internal non-determinism and



control external non-determinism by recording and replaying interactions across DPG boundaries.
dOS is orthogonal and complementary to DTHREADS, and in principle, the two could be combined.

Determinator is a microkernel-based operating system that enforces system-wide determinism [1].
Processes on Determinator run in isolation, and are able to communicate only at explicit synchro-
nization points. For programs that use condition variables, Determinator emulates a legacy thread
API with quantum-based determinism similar to CoreDet. This legacy support suffers from the same
performance and robustness problems as CoreDet.

Like Determinator, DTHREADS isolates threads by running them in separate processes, but na-
tively supports all pthreads communication primitives. DTHREADS is a drop-in replacement for
pthreads that needs no special operating system support.

Finally, some recent proposals provide limited determinism. Kendo guarantees a deterministic or-
der of lock acquisitions on commodity hardware (“weak determinism”); Kendo only enforces full
(“strong”) determinism for race-free programs [22]. TERN [15] uses code instrumentation to memo-
ize safe thread schedules for applications, and uses these memoized schedules for future runs on the
same input. Unlike these systems, DTHREADS guarantees full determinism even in the presence of
races.

3. DTHREADS OVERVIEW
int a = b = 0;
main() {
pthread_create(&p1, NULL, t1, NULL);
pthread_create(&p2, NULL, t2, NULL);
pthread_join(&p1, NULL);
pthread_join(&p2, NULL);
printf ("%d,%d\n", a, b);

}

void * t1 (void *) {
if (b == 0) {

a = 1;
}
return NULL;

}

void * t2 (void *) {
if (a == 0) {

b = 1;
}
return NULL;

}

Figure 1: A simple multithreaded program with data races on a and b. With pthreads, the
output is non-deterministic, but DTHREADS guarantees the same output on every execution.

We begin our discussion of how DTHREADS works with an example execution of a simple, racy
multithreaded program, and explain at a high level how DTHREADS enforces deterministic execution.

Figure 1 shows a simple multithreaded program that, because of data races, non-deterministically
produces the outputs “1,0,” “0,1” and “1,1.” With pthreads, the order in which these modifications
occur can change from run to run, resulting in non-deterministic output.

With DTHREADS, however, this program always produces the same output, (“1,1”), which corre-
sponds to exactly one possible thread interleaving. DTHREADS ensures determinism using the fol-
lowing key approaches, illustrated in Figure 2:

Isolated memory access: In DTHREADS, threads are implemented using separate processes with
private and shared views of memory, an idea introduced by Grace [6]. Because processes have sep-
arate address spaces, they are a convenient mechanism to isolate memory accesses between threads.
DTHREADS uses this isolation to control the visibility of updates to shared memory, so each “thread”
operates independently until it reaches a synchronization point (see below). Section 4.1 discusses the
implementation of this mechanism in depth.



Deterministic memory commit: Multithreaded programs often use shared memory for communica-
tion, so DTHREADS must propagate one thread’s writes to all other threads. To ensure deterministic
execution, these updates must be applied at deterministic times, and in a deterministic order.

DTHREADS updates shared state in sequence at synchronization points. These points include thread
creation and exit; mutex lock and unlock; condition variable wait and signal; posix sigwait and
signal; and barrier waits. Between synchronization points, all code effectively executes within an
atomic transaction. This combination of memory isolation between synchronization points with a
deterministic commit protocol guarantees deterministic execution even in the presence of data races.

Deterministic synchronization: DTHREADS supports the full array of pthreads synchroniza-
tion primitives. Because current operating systems make no guarantees about the order in which
threads will acquire locks, wake from condition variables, or pass through barriers, DTHREADS
re-implements these primitives to guarantee a deterministic ordering. Details on the DTHREADS
implementations of these primitives are given in Section 4.3.

Twinning and diffing: Before committing updates, DTHREADS first compares each modified page to
a “twin” (copy) of the original shared page, and then writes only the modified bytes (diffs) into shared
state (see Section 5 for optimizations that avoid copying and diffing). This algorithm is adapted from
the distributed shared memory systems TreadMarks and Munin [12, 17]. The order in which threads
write their updates to shared state is enforced by a single global token passed from thread to thread;
see Section 4.2 for full details.

Fixing the data race example
Returning to the example program in Figure 1, we can now see how DTHREADS’ memory isolation
and a deterministic commit order ensure deterministic output. DTHREADS effectively isolates each
thread from each other until it completes, and then orders updates by thread creation time using a
deterministic last-writer-wins protocol.

At the start of execution, thread 1 and thread 2 have the same view of shared state, with a = 0 and
b = 0. Because changes by one thread to the value of a or b will not be made visible to the other until
thread exit, both threads’ checks on line 2 will be true. Thread 1 sets the value of a to 1, and thread 2
sets the value of b to 1. These threads then commit their updates to shared state and exit, with thread
1 always committing before thread 2. The main thread then has an updated view of shared memory,
and prints “1, 1” on every execution.

This determinism not only enables record-and-replay and replicated execution, but also effectively
converts Heisenbugs into “Bohr” bugs, making them reproducible. In addition, DTHREADS option-
ally reports any conflicting updates due to racy writes, further simplifying debugging.

4. DTHREADS ARCHITECTURE
This section describes DTHREADS’ key algorithms—memory isolation, deterministic (diff-based)
memory commit, deterministic synchronization, and deterministic memory allocation—as well as
other implementation details.

4.1 Isolated Memory Access
To achieve deterministic memory access, DTHREADS isolates memory accesses among different
threads between commit points, and commits the updates of each thread deterministically.

DTHREADS achieves cross-thread memory isolation by replacing threads with processes. In a multi-
threaded program running with pthreads, threads share all memory except for the stack. Changes
to memory immediately become visible to all other threads. Threads share the same file descriptors,
sockets, device handles, and windows. By contrast, because DTHREADS runs threads in separate
processes, it must manage these shared resources explicitly.
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Figure 2: An overview of DTHREADS execution.

4.1.1 Thread Creation
DTHREADS replaces the pthread_create() function with the clone system call provided by
Linux. To create processes that have disjoint address spaces but share the same file descriptor table,
DTHREADS uses the CLONE_FILES flag. DTHREADS shims the getpid() function to return a
single, globally-shared identifier.

4.1.2 Deterministic Thread Index
POSIX does not guarantee deterministic process or thread identifiers; that is, the value of a process
id or thread id is not deterministic. To avoid exposing this non-determinism to threads running as
processes, DTHREADS shims pthread_self() to return an internal thread index. The internal
thread index is managed using a single global variable that is incremented on thread creation. This
unique thread index is also used to manage per-thread heaps and as an offset into an array of thread
entries.

4.1.3 Shared Memory
To create the illusion of different threads sharing the same address space, DTHREADS uses memory
mapped files to share memory across processes (globals and the heap, but not the stack; see Section 7).

DTHREADS creates two different mappings for both the heap and the globals. One is a shared map-
ping, which is used to hold shared state. The other is a private, copy-on-write (COW) per-process
mapping that each process works on directly. Private mappings are linked to the shared mapping
through a single fixed-size memory-mapped file. Reads initially go directly to the shared mapping,
but after the first write operation, both reads and writes are entirely private.

Memory allocations from the shared heap use a scalable per-thread heap organization loosely based
on Hoard [5] and built using HeapLayers [8]. DTHREADS divides the heap into a fixed number
of sub-heaps (currently 16). Each thread uses a hash of its deterministic thread index to find the
appropriate sub-heap.

4.2 Deterministic Memory Commit
Figure 3 illustrates the progression of parallel and serial phases. To guarantee determinism, DTHREADS
isolates memory accesses in the parallel phase. These accesses work on private copies of memory;
that is, updates are not shared between threads during the parallel phase. When a synchronization
point is reached, updates are applied (and made visible) in a deterministic order. This section de-
scribes the mechanism used to alternate between parallel and serial execution phases and guarantee
deterministic commit order, and the details of commits to shared memory.



4.2.1 Fence and Token
The boundary between the parallel and serial phases is the internal fence. We implement this fence
with a custom barrier, because the standard pthreads barrier does not support a dynamic thread
count (see Section 4.3).

Threads wait at the internal fence until all threads from the previous fence have departed. Waiting
threads must block until the departure phase. If the thread is the last to enter the fence, it initiates
the departure phase and wakes all waiting threads. As threads leave the fence, they decrement the
waiting thread count. The last thread to leave sets the fence to the arrival phase and wakes any waiting
threads.

To reduce overhead, whenever the number of running threads is less than or equal to the number of
cores, waiting threads block by spinning rather than by invoking relatively expensive cross-process
pthreads mutexes. When the number of threads exceeds the number of cores, DTHREADS falls
back to using pthreads mutexes.

A key mechanism used by DTHREADS is its global token. To guarantee determinism, each thread
must wait for the token before it can communicate with other threads. The token is a shared pointer
that points to the next runnable thread entry. Since the token is unique in the entire system, waiting
for the token guarantees a global order for all operations in the serial phase.

DTHREADS uses two internal subroutines to manage tokens. The waitToken function first waits
at the internal fence and then waits to acquire the global token before entering serial mode. The
putToken function passes the token to the next waiting thread.

To guarantee determinism (see Figure 3), threads leaving the parallel phase must wait at the internal
fence before they can enter into the serial phase (by calling waitToken). Note that it is crucial that
threads wait at the fence even for a thread which is guaranteed to obtain the token next, since one
thread’s commits can affect another threads’ behavior if there is no fence.

4.2.2 Commit Protocol
Figure 2 shows the steps taken by DTHREADS to capture modifications to shared state and expose
them in a deterministic order. At the beginning of the parallel phase, threads have a read-only map-
ping for all shared pages. If a thread writes to a shared page during the parallel phase, this write is
trapped and re-issued on a private copy of the shared page. Reads go directly to shared memory and
are not trapped. In the serial phase, threads commit their updates one at a time. The first thread to
commit to a page can directly copy its private copy to the shared state, but subsequent commits must

Thread 2

Thread 1

Thread 3

Parallel Phase Serial Phase

Time

Transaction 
Start Commit Token 

PassingSync

Figure 3: An overview of DTHREADS phases. Program execution with DTHREADS alternates
between parallel and serial phases.



copy only the modified bytes. DTHREADS computes diffs from a twin page, an unmodified copy of
the shared page created at the beginning of the serial phase. At the end of the serial phase, private
copies are released and these addresses are restored to read-only mappings of the shared memory.

At the start of every transaction (that is, right after a synchronization point), DTHREADS starts by
write-protecting all previously-written pages. The old working copies of these pages are then dis-
carded, and mappings are then updated to reference the shared state.

Just before every synchronization point, DTHREADS first waits for the global token (see below), and
then commits all changes from the current transaction to the shared pages in order. DTHREADS
maintains one “twin” page (a snapshot of the original) for every modified page with more than one
writer. If the version number of the private copy matches the shared page, then the current thread
must be the first thread to commit. In this case, the working copy can be copied directly to the shared
state. If the version numbers do not match, then another thread has already committed changes to the
page and a diff-based commit must be used.

Once changes have been committed, the number of writers to the page is decremented and the shared
page’s version number is incremented. If there are no writers left to commit, the twin page is freed.

4.3 Deterministic Synchronization
DTHREADS enforces determinism for the full range of synchronization operations in the pthreads
API, including locks, condition variables, barriers and various flavors of thread exit.

4.3.1 Locks
DTHREADS uses a single global token to guarantee ordering and atomicity during the serial phase.
When acquiring a lock, threads must first wait for the global token. Once a thread has the token it
can attempt to acquire the lock. If the lock is currently held, the thread must pass the token and wait
until the next serial phase to acquire the lock. It is possible for a program run with DTHREADS to
deadlock, but only for programs that can also deadlock with pthreads.

Lock acquisition proceeds as follows. First, DTHREADS checks to see if the current thread is already
holding any locks. If not, the thread first waits for the token, commits changes to shared state by
calling atomicEnd, and begins a new atomic section. Finally, the thread increments the number of
locks it is currently holding. The lock count ensures that a thread does not pass the token on until it
has released all of the locks it acquired in the serial phase.

pthread_mutex_unlock’s implementation is similar. First, the thread decrements its lock count.
If no more locks are held, any local modifications are committed to shared state, the token is passed,
and a new atomic section is started. Finally, the thread waits on the internal fence until the start of
the next round’s parallel phase. If other locks are still held, the lock count is just decreased and the
running thread continues execution with the global token.

4.3.2 Condition Variables
Guaranteeing determinism for condition variables is more complex than for mutexes because the op-
erating system does not guarantee that processes will wake up in the order they waited for a condition
variable.

When a thread calls pthread_cond_wait, it first acquires the token and commits local modifi-
cations. It then removes itself from the token queue, because threads waiting on a condition variable
do not participate in the serial phase until they are awakened. The thread decrements the live thread
count (used for the fence between parallel and serial phases), adds itself to the condition variable’s
queue, and passes the token. While threads are waiting on DTHREADS condition variables, they are
suspended on a pthreads condition variable. When a thread is awakened (signalled), it busy-waits



on the token before beginning the next transaction. Threads must acquire the token before proceeding
because the condition variable wait function must be called within a mutex’s critical section.

In the DTHREADS implementation of pthread_cond_signal, the calling thread first waits for
the token, and then commits any local modifications. If no threads are waiting on the condition
variable, this function returns immediately. Otherwise, the first thread in the condition variable queue
is moved to the head of the token queue and the live thread count is incremented. This thread is then
marked as ready and woken up from the real condition variable, and the calling thread begins another
transaction.

To impose an order on signal wakeup, DTHREADS signals actually call pthread_cond_broadcast
to wake all waiting threads, but then marks only the logically next one as ready. The threads not
marked as ready will wait on the condition variable again.

4.3.3 Barriers
As with condition variables, DTHREADS must ensure that threads waiting on a barrier do not disrupt
token passing among running threads. DTHREADS removes threads entering into the barrier from the
token queue and places them on the corresponding barrier queue.

In pthread_barrier_wait, the calling thread first waits for the token to commit any local
modifications. If the current thread is the last to enter the barrier, then DTHREADS moves the entire
list of threads on the barrier queue to the token queue, increases the live thread count, and passes the
token to the first thread in the barrier queue. Otherwise, DTHREADS removes the current thread from
the token queue, places it on the barrier queue, and releases token. Finally, the thread waits on the
actual pthreads barrier.

4.3.4 Thread Creation and Exit
To guarantee determinism, thread creation and exit are performed in the serial phase. Newly-created
threads are added to the token queue immediately after the parent thread. Creating a thread does not
release the token; this approach allows a single thread to quickly create multiple child threads without
having to wait for a new serial phase for each child thread.

When creating a thread, the parent first waits for the token. It then creates a new process with shared
file descriptors but a distinct address space using the clone system call. The newly created child
obtains the global thread index, places itself in the token queue, and notifies the parent that the child
has registered itself in the active list. The child thread then waits for the next parallel phase before
proceeding.

Similarly, DTHREADS’ pthread_exit first waits for the token and then commits any local modi-
fications to memory. It then removes itself from the token queue and decreases the number of threads
required to proceed to the next phase. Finally, the thread passes its token to the next thread in the
token queue and exits.

4.3.5 Thread Cancellation
DTHREADS implements thread cancellation in the serial phase. A thread can only invoke pthread_cancel
while holding the token. If the thread being cancelled is waiting on a condition variable or barrier, it
is removed from the queue. Finally, to cancel the corresponding thread, DTHREADS kills the target
process with a call to kill(tid, SIGKILL).

4.4 Deterministic Memory Allocation
Programs sometimes rely on the addresses of objects returned by the memory allocator intentionally
(for example, by hashing objects based on their addresses), or accidentally. A program with a memory
error like a buffer overflow will yield different results for different memory layouts.
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Figure 4: Normalized execution time with respect to pthreads (lower is better). For 9 of
the 14 benchmarks, DTHREADS runs nearly as fast or faster than pthreads, while providing
deterministic behavior.

This reliance on memory addresses can undermine other efforts to provide determinism. For example,
CoreDet is unable to fully enforce determinism because it relies on the Hoard scalable memory
allocator [5]. Hoard was not designed to provide determinism and several of its mechanisms, thread
id based hashing and non-deterministic assignment of memory to threads, lead to non-deterministic
execution in CoreDet for the canneal benchmark.

To preserve determinism in the face of intentional or inadvertent reliance on memory addresses, we
designed the DTHREADS memory allocator to be fully deterministic. DTHREADS assigns subheaps
to each thread based on its thread index (deterministically assigned; see Section 4.1.2). In addition to
guaranteeing the same mapping of threads to subheaps on repeated executions, DTHREADS allocates
superblocks (large chunks of memory) deterministically by acquiring a lock (and the global token)
on each superblock allocation. Thus, threads always use the same subheaps, and these subheaps
always contain the same superblocks on each execution. The remainder of the memory allocator is
entirely deterministic. The superblocks themselves are allocated via mmap: while DTHREADS could
use a fixed address mapping for the heap, we currently simply disable ASLR to provide deterministic
mmap calls. If a program does not use the absolute address of any heap object, DTHREADS can
guarantee determinism even with ASLR enabled. Hash functions and lock-free algorithms frequently
use absolute addresses, and any deterministic multithreading system must disable ASLR to provide
deterministic results for these cases.

4.5 OS Support
DTHREADS provides shims for a number of system calls both for correctness and determinism (al-
though it does not enforce deterministic arrival of I/O events; see Section 7).

System calls that write to or read from buffers on the heap (such as read and write) will fail if the
buffers contain protected pages. DTHREADS intercepts these calls and touches each page passed in
as an argument to trigger the copy-on-write operation before issuing the real system call. DTHREADS
conservatively marks all of these pages as modified so that any updates made by the system will be
committed properly.

DTHREADS also intercepts other system calls that affect program execution. For example, when a
thread calls sigwait, DTHREADS behaves much like it does for condition variables. It removes
the calling thread from the token queue before issuing the system call, and after being awakened the
thread must re-insert itself into the token queue and wait for the token before proceeding.

5. OPTIMIZATIONS
DTHREADS employs a number of optimizations that improve its performance.

Lazy commit: DTHREADS reduces copying overhead and the time spent in the serial phase by lazily



committing pages. When only one thread has ever modified a page, DTHREADS considers that thread
to be the page’s owner. An owned page is committed to shared state only when another thread
attempts to read or write this page, or when the owning thread attempts to modify it in a later phase.
DTHREADS tracks reads with page protection and signals the owning thread to commit pages on
demand. To reduce the number of read faults, pages holding global variables (which we expect to be
shared) and any pages in the heap that have ever had multiple writers are all considered unowned and
are not read-protected.

Lazy twin creation and diff elimination: To further reduce copying and memory overhead, a twin
page is only created when a page has multiple writers during the same transaction. In the commit
phase, a single writer can directly copy its working copy to shared state without performing a diff.
DTHREADS does this by comparing the local version number to the global page version number
for each dirtied page. At commit time, DTHREADS directly copies its working copy for each page
whenever its local version number equals its global version number. This optimization saves the cost
of a twin page allocation, a page copy, and a diff in the common case where just one thread is the
sole writer of a page.

Single-threaded execution: Whenever only one thread is running, DTHREADS stops using memory
protection and treats certain synchronization operations (locks and barriers) as no-ops. In addition,
when all other threads are waiting on condition variables, DTHREADS does not commit local changes
to the shared mapping or discard private dirty pages. Updates are only committed when the thread
issues a signal or broadcast call, which wakes up at least one thread and thus requires that all updates
be committed.

Lock ownership: DTHREADS uses lock ownership to avoid unnecessary waiting when threads are
using distinct locks. Initially, all locks are unowned. Any thread that attempts to acquire a lock that
it does not own must wait until the serial phase to do so. If multiple threads attempt to acquire the
same lock, this lock is marked as shared. If only one thread attempts to acquire the lock, this thread
takes ownership of the lock and can acquire and release it during the parallel phase.

Lock ownership can result in starvation if one thread continues to re-acquire an owned lock without
entering the serial phase. To avoid this, each lock has a maximum number of times it can be acquired
during a parallel phase before a serial phase is required.

Parallelization: DTHREADS attempts to expose as much parallelism as possible in the runtime
system itself. One optimization takes place at the start of trasactions, where DTHREADS performs a
variety of cleanup tasks. These include releasing private page frames, and resetting pages to read-
only mode by calling the madvise and mprotect system calls. If all this cleanup work is done
simultaneously for all threads in the beginning of parallel phase (Figure 3), this can hurt performance
for some benchmarks.

Since these operations do not affect other the behavior of other threads, most of this work can be
parallelized with other threads’ commit operations without holding the global token. With this opti-
mization, the token is passed to the next thread as soon as possible, saving time in the serial phase.
Before passing the token, any local copies of pages that have been modified by other threads must
be discarded, and the shared read-only mapping is restored. This ensures all threads have a complete
image of this page which later transactions may refer to. In the actual implementation, this cleanup
occurs at the end of each transaction.

6. EVALUATION
We perform our evaluation on an Intel Core 2 dual-processor CPU system equipped with 16GB
of RAM. Each processor is a 4-core 64-bit Xeon running at 2.33GHZ with a 4MB L2 cache. The
operating system is CentOS 5.5 (unmodified), running with Linux kernel version 2.6.18-194.17.1.el5.
The glibc version is 2.5. Benchmarks were built as 32-bit executables with version 2.6 of the LLVM
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Figure 5: Speedup with four and eight cores relative to two cores (higher is better). DTHREADS
generally scales nearly as well or better than pthreads and almost always as well or better
than CoreDet. CoreDet was unable to run dedup with two cores and ferret with four cores,
so some scalability numbers are missing.

compiler.

6.1 Methodology
We evaluate the performance and scalability of DTHREADS versus CoreDet and pthreads across
the PARSEC [9] and Phoenix [24] benchmark suites. We do not include results for bodytrack,
fluidanimate, x.264, facesim, vips, and raytrace benchmarks from PARSEC, since
they do not currently work with DTHREADS (note that many of these also do not work for CoreDet).

In order to compare performance directly against CoreDet, which relies on the LLVM infrastruc-
ture [18], all benchmarks are compiled with the LLVM compiler at the “-O3” optimization level [18].
Each benchmark is executed ten times on a quiescent machine. To reduce the effect of outliers, the
lowest and highest execution times for each benchmark are discarded, so each result is the average of
the remaining eight runs.

Tuning CoreDet: The performance of CoreDet [3] is extremely sensitive to three parameters: the
granularity for the ownership table (in bytes), the quantum size (in number of instructions retired),
and the choice between full and reduced serial mode. We performed an extensive search of the pa-
rameter space to find the one that yielded the lowest average normalized runtimes (using six possible
granularities and eight possible quanta for each benchmark), and found that the best settings on our
system were 64-byte granularity and a quantum size of 100,000 instructions, in full serial mode.

Unsupported Benchmarks: We were unable to evaluate DTHREADS on seven of the PARSEC
benchmarks: vips and raytracewould not build as 32-bit executables; bodytrack, facesim,
and x264 depend on sharing of stack variables; fluidanimate uses ad-hoc synchronization, so
it will not run without modifications; and freqmine does not use pthreads.

For all scalability experiments, we logically disable CPUs using Linux’s CPU hotplug mechanism,
which allows us to disable or enable individual CPUs by writing “0” (or “1”) to a special pseudo-file
(/sys/devices/system/cpu/cpuN/online).

6.2 Determinism
We first experimentally verify DTHREADS’ ability to ensure determinism by executing the racey
determinism tester [22]. This stress test is extremely sensitive to memory-level non-determinism.
DTHREADS reports the same results for 2,000 runs. We also compared the schedules and outputs of
all benchmarks used to ensure that every execution is identical.

6.3 Performance



We next compare the performance of DTHREADS to CoreDet and pthreads. Figure 4 presents
these results graphically (normalized to pthreads).

DTHREADS outperforms CoreDet on 12 out of 14 benchmarks (between 14% and 11.2× faster);
for 8 benchmarks, DTHREADS matches or outperforms pthreads. DTHREADS results in good
performance for several reasons:

• Process invocation is only slightly more expensive than thread creation. This is because both
rely on the clone system call. Copy-on-write semantics allow process creation without ex-
pensive copying.

• Context switches between processes are more expensive than for threads because of the re-
quired TLB shootdown. The number of context switches was minimized by running on a
quiescent system with the number of threads matched to the number of cores whenever possi-
ble.

• DTHREADS incurs no read overhead and very low write overhead (one page fault per written
page), but commits are expensive. Most of our benchmarks (and many real applications) result
in small, infrequent commits.

• DTHREADS isolates updates in separate processes, which can improve performance by elimi-
nating false sharing. Because threads actually execute in different address spaces, there is no
coherence traffice between synchronization points.

By eliminating catastrophic false sharing, DTHREADS dramatically improves the performance of
the linear_regression benchmark, running 7× faster than pthreads and 11.2× faster than
CoreDet. The string_match benchmark exhibits a similar, if less dramatic, false sharing prob-
lem: with DTHREADS, it runs almost 40% faster than pthreads and 9.2× faster than CoreDet.
Two benchmarks also run faster with DTHREADS than with pthreads (histogram, 2× and
swaptions, 5%; respectively 8.5× and 8.9× faster than with CoreDet). We believe but have not
yet verified that the reason is false sharing.

For some benchmarks, DTHREADS incurs modest overhead. For example, unlike most benchmarks
examined here, which create long-lived threads, the kmeans benchmark creates and destroys over
1,000 threads over the course of one run. While Linux processes are relatively lightweight, creating
and tearing down a process is still more expensive than the same operation for threads, accounting
for a 5% performance degradation of DTHREADS over pthreads (though it runs 4.9× faster than
CoreDet).

DTHREADS runs substantially slower than pthreads for 4 of the 14 benchmarks examined here.
The ferret benchmark relies on an external library to analyze image files during the first stage in its
pipelined execution model; this library makes intensive (and in the case of DTHREADS, unnecessary)
use of locks. Lock acquisition and release in DTHREADS imposes higher overhead than ordinary
pthreads mutex operations. More importantly in this case, the intensive use of locks in one stage
forces DTHREADS to effectively serialize the other stages in the pipeline, which must repeatedly
wait on these locks to enforce a deterministic lock acquisition order. The other three benchmarks
(canneal, dedup, and reverse_index) modify a large number of pages. With DTHREADS,
each page modification triggers a segmentation violation, a system call to change memory protection,
the creation of a private copy of the page, and a subsequent copy into the shared space on commit.
We note that CoreDet also substantially degrades performance for these benchmarks, so much of this
slowdown may be inherent to any deterministic runtime system.

6.4 Scalability



To measure the scalability cost of running DTHREADS, we ran our benchmark suite (excluding
canneal) on the same machine with eight cores, four corse, and just two cores enabled. When-
ever possible without source code modifications, the number of threads was matched to the number
of CPUs enabled. We have found that DTHREADS scales at least as well as pthreads for 9 of 13
benchmarks, and scales as well or better than CoreDet for all but one benchmark where DTHREADS
outperforms CoreDet by 3.5×. Detailed results of this experiment are presented in Figure 5 and
discussed below.

The canneal benchmark was excluded from the scalability experiment because it matches the
workload to the number of threads, making the comparison between different numbers of threads in-
valid. DTHREADS hurts scalability relative to pthreads for the kmeans, word_count, dedup,
and streamcluster benchmarks, although only marginally in most cases. In all of these cases,
DTHREADS scales better than CoreDet.

DTHREADS is able to match the scalability of pthreads for three benchmarks: matrix_multiply,
pca, and blackscholes. With DTHREADS, scalability actually improves over pthreads for 6
out of 13 benchmarks. This is because DTHREADS prevents false sharing, avoiding unnecessary
cache invalidations that normally hurt scalability.

6.5 Performance Analysis
6.5.1 Benchmark Characteristics

The data presented in Table 1 are obtained from the executions running on all 8 cores. Column 2
shows the percentage of time spent in the serial phase. In DTHREADS, all memory commits and
actual synchronization operations are performed in the serial phase. The percentage of time spent
in the serial phase thus can affect performance and scalability. Applications with higher overhead
in DTHREADS often spend a higher percentage of time in the serial phase, primarily because they
modify a large number of pages that are committed during that phase.

Column 3 shows the number of transactions in each application and Column 4 provides the aver-
age length of each transaction (ms). Every synchronization operation, including locks, condition
variables, barriers, and thread exits demarcate transaction boundaries in DTHREADS. For exam-
ple, reverse_index, dedup, ferret and streamcluster perform numerous transactions
whose execution time is less than 1ms, imposing a performance penalty for these applications. Bench-
marks with longer (or fewer) transactions run almost the same speed as or faster than pthreads,
including histogram or pca. In DTHREADS, longer transactions amortize the overhead of mem-
ory protection and copying.

Column 5 provides more detail on the costs associated with memory updates (the number and total
volume of dirtied pages). From the table, it becomes clear why canneal (the most notable outlier)
runs much slower with DTHREADS than with pthreads. This benchmark updates over 3 million
pages, leading to the creation of private copies, protection faults, and commits to the shared memory
space. Copying alone is quite expensive: we found that copying one gigabyte of memory takes
approximately 0.8 seconds when using memcpy, so for canneal, copying overhead alone accounts
for at least 20 seconds of time spent in DTHREADS (out of a total execution time of 39 seconds).

Conclusion: For the few benchmarks that perform large numbers of short-lived transactions, modify
a large number of pages per-transaction, or both, DTHREADS can result in substantial overhead. Most
benchmarks examined here run fewer, longer-running transactions with a modest number of modified
pages. For these applications, overhead is amortized. With the side-effect of eliminating false sharing,
DTHREADS can sometimes even outperform pthreads.

6.5.2 Performance Impact Analysis
To understand the performance impact of DTHREADS, we re-ran the benchmark suite on two indi-
vidual components of DTHREADS: deterministic synchronization and memory protection.



Serial Transactions Dirtied
Benchmark (% time) Count Time (ms) Pages
histogram 0 23 15.47 29
kmeans 0 3929 3.82 9466
linear_reg. 0 24 23.92 17
matrix_mult. 0 24 841.2 3945
pca 0 48 443 11471
reverseindex 17% 61009 1.04 451876
string_match 0 24 82 41
word_count 1% 90 26.5 5261
blackscholes 0 24 386.9 991
canneal 26.4% 1062 43 3606413
dedup 31% 45689 0.1 356589
ferret 12.3% 11282 1.49 147027
streamcluster 18.4% 130001 0.04 131992
swaptions 0 24 163 867

Table 1: Benchmark characteristics.
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Figure 6: Normalized execution time with respect to pthreads (lower is better) for three
configurations. The sync-only and prot-only configurations are described in Section 6.5.2.

Sync-only: This configuration enforces only a deterministic synchronization order. Threads have
direct access to shared memory with no isolation. Overhead from this component is largely due to
load imbalance from the deterministic scheduler.

Prot-only: This configuration runs threads in isolation, with commits at synchronization points. The
synchronization and commit order is not controlled by DTHREADS. This configuration eliminates
false sharing, but also introduces isolation and commit overhead. The lazy twin creation and single-
threaded execution optimizations are disabled here because they are unsafe without deterministic
synchronization.

The results of this experiment are presented in Figure 6 and discussed below.

• The reverse_index, dedup, and ferret benchmarks show significant load imbalance
with the sync-only configuration. Additionally, these benchmarks have high overhead from the
prot-only configuration because of a large number of transactions.

• Both string_match and histogram run faster with the sync-only configuration. The
reason for this is not obvious, but may be due to the per-thread allocator.

• Memory isolation in the prot-only configuration eliminates false sharing, which resulted in
speedups for histogram, linear_regression, and swaptions.



• Normally, the performance of DTHREADS is not better than the prot-only configuration. How-
ever, both ferret and canneal run faster with deterministic synchronization enabled. Both
benchmarks benefit from optimizations described in Section 5 that are only safe with determin-
istic synchronization enabled. ferret benefits from the single threaded execution optimiza-
tion, and canneal sees performance gains due to the shared twin page optimization.

7. DISCUSSION
All DMT systems must impose an order on updates to shared memory and synchronization opera-
tions. The mechanism used to isolate updates affects the limitations and performance of the system.
DTHREADS represents a new point in the design space for DMT systems with some inherent advan-
tages and limitations which we discuss below.

7.1 Design Tradeoffs
CoreDet and DTHREADS both use a combination of parallel and serial phases to execute programs
deterministically. These two systems take different approaches to isolation during parallel execution,
as well as the transitions between phases:

Memory isolation: CoreDet orders updates to shared memory by instrumenting all memory accesses
that could reference shared data. Synchronization operations and updates to shared memory must be
performed in a serial phase. This approach results in high instrumentation overhead during parallel
execution, but incurs no additional overhead when exposing updates to shared state.

DTHREADS takes an alternate approach: updates to shared state proceed at full speed, but are isolated
using hardware-supported virtual memory. When a serial phase is reached, these updates must be
exposed in a deterministic order with the twinning and diffing method described in Section 4.2.2.

A pleasant side-effect of this approach is the elimination of false sharing. Because threads work in
separate address spaces, there is no need to keep caches coherent between threads during the parallel
phase. For some programs this results in a performance improvement as large as 7× when compared
to pthreads.

Phases: CoreDet uses a quantum-based scheduler to execute the serial phase. After the specified
number of instructions is executed, the scheduler transitions to the serial phase. This approach bounds
the waiting time for any threads that are blocked until a serial phase. One drawback of this approach
is that transitions to the serial phase do not correspond to static program points. Any code changes
(and most inputs) will result in a new, previously-untested schedule.

Transitions between phases are static in DTHREADS. Any synchronization operation will result in a
transition to a serial phase, and parallel execution will resume once all threads have executed their
critical sections. This makes DTHREADS susceptible to delays due to load imbalance between threads
but results in more robust determinism. With DTHREADS, only the order of synchronization opera-
tions affects the schedule. For most programs this means that different inputs, and even many code
changes, will not change the schedule produced by DTHREADS.

7.2 Limitations
External non-determinism: DTHREADS provides only internal determinism. It does not guarantee
determinism when a program’s behavior depends on external events, such as system time or the arrival
order of network packets. The dOS framework is a proposed OS mechanism that provides system-
level determinism [4]. dOS provides Deterministic Process Groups and a deterministic replay shim
for external events, but uses CoreDet to make each individual process deterministic. DTHREADS
could be used instead CoreDet within the dOS system, which would add support for controlling
external non-determinism.

Unsupported programs: DTHREADS supports programs that use the pthreads library, but does



not support programs that bypass it by rolling their own ad hoc synchronization operations. While ad
hoc synchronization is common, it is also a notorious source of bugs; Xiong et al. show that 22–67%
of the uses of ad hoc synchronization lead to bugs or severe performance issues [25].

DTHREADS does not write-share the stack across threads, so any updates to stack variables are only
locally visible. While sharing of stack variables is supported by pthreads, this practice is error-
prone and relatively uncommon. Support for shared stack variables could be added to DTHREADS by
handling stack memory like the heap and globals, but this would require additional optimizations to
avoid poor performance in the common case where stack memory is unshared.

Memory consumption: DTHREADS creates private, per-process copies of modified pages between
commits. Because of this, it can increase a program’s memory footprint by the number of modi-
fied pages between synchronization operations. This increased footprint does not pose a problem
in practice, both because the number of modified pages is generally far smaller than the number of
pages read, and because it is transitory: all private pages are relinquished to the operating system (via
madvise) at the end of every commit.

Memory consistency: DTHREADS provides a form of release consistency for parallel programs,
where updates are exposed at static program points. CoreDet’s DMP-B mode also uses release con-
sistency, but the update points depend on when the quantum counter reaches zero. To the best of our
knowledge, DTHREADS cannot produce an output that is not possible with pthreads, although for
some cases it will result in unexpected output. When run with DTHREADS, the example in Figure 1
will always produce the output “1,1.” This ouptut is also possible with pthreads, but is much less
likely (occurring in just 0.01% of one million runs) than “1,0” (99.43%) or “0,1” (0.56%). Of course,
the same unexpected output will be produced on every run with DTHREADS, making it easier for
developers to track down the source of the problem than with pthreads.

8. CONCLUSION
DTHREADS is a deterministic replacement for the pthreads library that supports general-purpose
multithreaded applications. It is straightforward to deploy: DTHREADS resuires no source code,
and operates on commodity hardware. By converting threads into processes, DTHREADS leverages
process isolation and virtual memory protection to track and isolate concurrent memory updates
with low overhead. Changes are committed deterministically at natural synchronization points in
the code, rather than at boundaries based on hardware performance counters. DTHREADS not only
ensures full internal determinism—eliminating data races as well as deadlocks—but does so in a way
that is portable and easy to understand. Its software architecture prevents false sharing, a notorious
performance problem for multithreaded applications running on multiple, cache-coherent processors.
The combination of these approaches enables DTHREADS to match or even exceed the performance
of pthreads for the majority of the benchmarks examined here, making DTHREADS a safe and
efficient alternative to pthreads for many applications.
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