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ABSTRACT
Fay is a flexible platform for the efficient collection, processing, and analysis of software execution
traces. Fay provides dynamic tracing through use of runtime instrumentation and distributed aggre-
gation within machines and across clusters. At the lowest level, Fay can be safely extended with new
tracing primitives, including even untrusted, fully-optimized machine code, and Fay can be applied
to running user-mode or kernel-mode software without compromising system stability. At the high-
est level, Fay provides a unified, declarative means of specifying what events to trace, as well as the
aggregation, processing, and analysis of those events.

We have implemented the Fay tracing platform for Windows and integrated it with two powerful,
expressive systems for distributed programming. Our implementation is easy to use, can be applied
to unmodified production systems, and provides primitives that allow the overhead of tracing to be
greatly reduced, compared to previous dynamic tracing platforms. To show the generality of Fay
tracing, we reimplement, in experiments, a range of tracing strategies and several custom mechanisms
from existing tracing frameworks.

Fay shows that modern techniques for high-level querying and data-parallel processing of disaggre-
gated data streams are well suited to comprehensive monitoring of software execution in distributed
systems. Revisiting a lesson from the late 1960’s [15], Fay also demonstrates the efficiency and ex-
tensibility benefits of using safe, statically-verified machine code as the basis for low-level execution
tracing. Finally, Fay establishes that, by automatically deriving optimized query plans and code for
safe extensions, the expressiveness and performance of high-level tracing queries can equal or even
surpass that of specialized monitoring tools.

Categories and Subject Descriptors
D.4.8 [Performance]: Monitors; D.2.5 [Software Engineering]: Testing and Debugging—Tracing
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1. INTRODUCTION
Fay takes a new approach to the collection, processing, and analysis of software execution traces
within a machine or across a cluster. The dictionary definition of Fay is “a fairy,” as a noun, or “to
join tightly or closely,” as a verb. In our work, Fay is a comprehensive tracing platform that provides
both expressive means for querying software behavior and also the mechanisms for the efficient
execution of those queries. Our Fay platform implementation shows the appeal of the approach and
can be applied to live, unmodified production systems running current x86-64 versions of Windows.

At its foundation, Fay provides highly-flexible, efficient mechanisms for the inline generation and
general processing of trace events, via dynamic instrumentation and safe machine-code execution.
These mechanisms allow pervasive, high-frequency tracing of functions in both kernel and user-
mode address spaces to be applied dynamically, to executing binaries, without interruption in service.
At the point of each trace event generation, Fay safely allows custom processing of event data and
computation of arbitrary summaries of system state. Through safe execution of native machine code
and through inline code invocation (not using hardware traps), Fay provides primitives with an order-
of-magnitude less overhead than those of DTrace or SystemTap [11, 45].

At its topmost level, Fay provides a high-level interface to systems tracing where runtime behavior of
software is modeled as a distributed, dynamically-generated dataset, and trace collection and analysis
is modeled as a data-parallel computation on that dataset. This query interface provides a flexible,
unified means for specifying large-scale tracing of distributed systems. High-level queries also allow
the Fay platform to automatically optimize trace event collection and analysis in ways that often
greatly reduce overhead.

Below is an example of a complete high-level Fay query that specifies both what to trace and also
how to process and combine trace events from different CPUs, threads, and machines:

from io in cluster.Function("iolib!Read")
where io.time < Now.AddMinutes(5)
let size = io.Arg(2) // request size in bytes
group io by size/1024 into g
select new { sizeInKilobytes = g.Key,

countOfReadIOs = g.Count() };

This query will return, for an entire cluster of machines, an aggregate view over 5 minutes of the read
sizes seen in a module iolib, for all uses of that module in user-mode or in the kernel. In our Fay
implementation, such declarative queries are written in a form of LINQ [29]. From these queries,
Fay automatically derives efficient code for distributed query execution, optimizing for factors such
as early trace data aggregation and reduced network communication.

Fay can also be accessed through other, more traditional means. In particular, in our implementation,
Fay can be used through scripts in the PowerShell system administration scripting language [55],
as well as directly through standard command-line tools. However it is used, Fay retains the best
features of prior tracing systems, such as efficient trace event collection, low overhead—proportional
to tracing activity, and zero by default—and stateful probes that can process event data directly at a
tracepoint. Fay also provides strong safety guarantees that allow probes to be extended in novel ways
with new, high-performance primitives.

1.1 Implementation and Experience
For now, Fay has been implemented only for the current x86-64 variants of Windows. However, the
Fay approach is generally applicable, and could be used for distributed software execution tracing on
most operating systems platforms. In particular, a Fay implementation for Linux should be achievable
by modifying existing mechanisms such as Ftrace [48], Native Client [64], and the FlumeJava or
Hadoop data-parallel execution frameworks [2, 13].

Although the specifics will vary, any Fay implementation will have to overcome most of the same
challenges that we have addressed in our implementation for Windows. First, Fay must preserve all



the relevant software invariants—such as timing constraints, reentrancy and thread safety, locking
disciplines, custom calling conventions, paging and memory access controls, and the execution states
of threads, processes, and the kernel—and these are often hard-to-enumerate, implicit properties of
systems platforms.

Specifically, Fay must correctly manage tracepoints and probes and reliably modify machine code
to invoke probes inline at tracepoints—which is made especially challenging by preemptive thread
scheduling and hardware concurrency [1]. As described in Section 3, Fay meets these challenges with
generally-applicable techniques that include machine-wide code-modification barriers, non-reentrant
dispatching, lock-free or thread-local state, and the use of time-limited, safe machine code to prevent
side effects. In particular, Fay offers the lesson that reliable machine-code modification is a good
basis for implementing platform mechanisms, as well as to install tracepoints.

Second, Fay must provide mechanisms for safe machine-code extensibility, in a manner that balances
tradeoffs between simplicity, performance, high assurance, applicability to legacy code, compatibility
with low-level runtime environments, debuggability, ease-of-use, etc. As described in Section 3.3,
the safety of our Fay extensions is based on XFI mechanisms, which are uniquely well suited to low-
level, kernel-mode machine code [18]. We have developed several variants of XFI, over a number
of years, and applied them to different purposes. Our experience is that specializing mechanisms
like XFI to the target application domain, and its constraints, results in the best tradeoffs. Thus,
Fay’s XFI variant is relatively simple, and is tuned for thread-local, run-to-completion execution of
newly-written, freshly ported, or synthesized Fay extensions, either in user-mode processes or the
kernel.

Third, as the last major hurdle, to efficiently support high-level queries, a Fay tracing platform must
correctly integrate with new or existing query languages and data-parallel execution frameworks. In
particular, Fay query-plan generation, optimizations, and task scheduling must correctly consider the
difference between persistent, redundantly-stored trace event data and tracepoint-generated data—
which is available only at an online, ephemeral source, since a tracepoint’s thread, process, or ma-
chine may halt at any time. Section 4.2 describes how our Fay implementation meets this challenge,
by using a simple, fixed policy for scheduling the processing of ephemeral trace events, by using
explicitly-flushed, constant-size (associative) arrays as the single abstraction for their data, and by
applying incremental-view-update techniques from databases to query planning and optimization.

We have applied Fay tracing to a variety of execution monitoring tasks and our experience suggests
that Fay improves upon the expressiveness and efficiency of previous dynamic tracing platforms, as
well as of some custom tracing mechanisms. In particular, we have found no obstacles to using data-
parallel processing of high-level queries for distributed systems monitoring. Although Fay query
processing is disaggregated—collecting and partially analyzing trace events separately on different
CPU cores, user-mode processes, threads, and machines—in practice, Fay can combine collected
trace events into a sufficiently global view of software behavior to achieve the intended monitoring
goals. We have found no counterexamples, ill-suited to Fay tracing, in our review of the execution
tracing literature, in our searches of the public forums and repositories of popular tracing platforms,
or in our experiments using Fay tracing to reimplement a wide range of tracing strategies, described
in Section 5. Thus, while data-parallel processing is not a natural fit for all computations, it seems
well-suited to the mechanisms, strategies, and queries of distributed systems tracing.

Our experiences also confirm the benefits of extensibility through safe, statically-verified machine
code—benefits first identified four decades ago in the Informer profiler [15]. Safe extensions are key
to the flexibility of Fay tracing, since they allow any untrusted user to utilize new, native-code tracing
primitives without increased risk to system integrity or reliability. As described in Section 4.2, they
also enable practical use of high-level, declarative Fay tracing queries, by allowing Fay to synthesize
code for efficient, query-specific extensions that it can use for early aggregation and processing in
optimized Fay query plans.
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Figure 1: Tracing of an operating system and a machine cluster, as implemented in FayLINQ.
Stars represent tracepoints, circles are probes, rounded rectangles are address spaces or mod-
ules, rectangles are machines, and pentagons denote final aggregation and processing. Arrows
show data flow, optimized for early data reduction within each module, process, or machine;
redundant copying for fault tolerance is not indicated.

In the rest of this paper we outline the motivation, design, and high-level interfaces of Fay tracing
and describe the details of its mechanisms. We report on benchmarks, measurements, and use cases
in order to establish the scalability, efficiency, and flexibility of Fay tracing and to show its benefits to
investigations of software behavior. In particular, we show that Fay tracing can replicate and extend
a variety of powerful, custom strategies used on existing distributed software monitoring platforms.

2. GOALS AND LANGUAGE INTERFACES
Fay is motivated by an idealized model of software execution tracing for distributed systems, outlined
in Figure 1. The goals can be summarized as follows: The tracing platform should allow arbitrary
high-level, side-effect-free queries about any aspect of system behavior. At each tracepoint—i.e.,
when the traced behavior occurs at runtime—the platform should allow arbitrary processing across
all current system state. Such general processing probes should be allowed to maintain state, and
used to perform early data reduction (such as filtering or aggregation) before emitting trace events.

Ideally, tracing should incur low overhead when active and should have zero overhead when turned
off. The total overhead should be proportional to the frequency of tracepoints and to the complex-
ity of probe processing. Tracing should be optimized for efficiency, in particular by favoring early
data reduction and aggregation; this optimization should apply to all communication, including that
between probes, between traced modules, and between machines in the system. Finally, trace events
may be ephemeral, since software or hardware may fail at any time; however, once a trace event has
been captured, further trace processing should be lossless, and fault-tolerant.

To achieve these goals for Fay tracing, our implementation integrates with two high-level-language
platforms: PowerShell scripting [55] and the DryadLINQ system for distributed computing [66].
Figure 2 and Figure 3 show examples of how Fay tracing can be specified on these platforms.

FayLINQ is a high-level interface to Fay tracing that allows analysis of strongly-typed sequences
of distributed trace events. FayLINQ is implemented by extending DryadLINQ and derives its ex-
pressive programming model from Language INtegrated Queries, or LINQ [29]. FayLINQ’s pro-
gramming model allows a flexible combination of object-oriented, imperative code and high-level



$probe = {
process {

switch( $([Fay]::Tracepoint()) ) {
$([Fay]::Kernel("ExAllocate*"))

{ $count = $count + 1; }
}

}
end { Write-FayOutput $count; }

}
Get-FayTrace $probe -StopAfterMinutes 5 ‘

| select count ‘
| measure -Sum

Figure 2: A Fay PowerShell script that counts the invocation of certain memory-allocation func-
tions in a 5-minute interval, on all CPUs of a Windows kernel. Here, $probe uses a switch
to match tracepoints to awk-like processing (counting) and specifies the output of aggregated
data (the count). A separately-specified pipeline combines the outputs (into a final sum).

cluster.Function(kernel, "ExAllocate*")
.Count(event => (event.time < Now.AddMinutes(5)));

Figure 3: An example FayLINQ query to perform the same count as in Figure 2 across an
entire cluster. From this, Fay can generate optimized query plans and efficient code for local
processing (counting) and hierarchical aggregation (summing).

declarative data processing [65, 66]. A FayLINQ query can simultaneously express trace collection,
trace event analysis, and even the persisting of trace event logs.

FayLINQ queries operate on the entire dataset of all possible tracepoints, and their associated system
state, but hide the distributed nature of this dataset by executing as if it had been collected to a central
location. In practice, queries are synthesized into data-parallel computations that enable tracing only
at relevant tracepoints, and perform early data selection, filtering, and aggregation of trace events.
FayLINQ makes use of modified mechanisms from DryadLINQ—described in Section 4.2—to han-
dle query optimization, data distribution, and fault-tolerance [65, 66]. In particular, analysis and
rewriting of the query plan allows FayLINQ to automatically derive optimized code that runs within
the finite space and time constraints of simple probe processing, and can be used even in the operating
system kernel.

There is little room for optimization in script-based tracing systems such as Fay PowerShell, or the
popular DTrace and SystemTap platforms [11, 45]. These scripting interfaces share inefficiencies
that can also be seen in Figure 2. Trace events are generated by executing imperative probes that
are specified separately, in isolation from later processing, and this barrier between event generation
and analysis prevents most automatic optimizations. Furthermore, by default, for final analysis, trace
events must be collected in a fan-in fashion onto a single machine.

In comparison, FayLINQ is able to give the illusion of tracing a single system, through a unified,
coherent interface, even when multiple computers, kernels, or user-level processes are involved. Only
a few limitations remain, such as that tracing may slightly perturb timing, and that probes can access
only state in the address space they are tracing.

Fay tracing may sometimes be best done directly on the command line, or through a PowerShell
script, despite the limited opportunity for optimization, In particular, PowerShell is part of the stan-
dard Windows monitoring toolset, and is well suited to processing and analysis of object sequences
such as trace events [55]. Furthermore, PowerShell exposes Windows secure remote access features
that allow Fay scripts to be executed even across machines in heterogeneous administrative domains.



Even so, the benefits of FayLINQ over PowerShell are made clear by the example query of Figure 3.
This query shows how simple and intuitive tracing a cluster of machines can be with FayLINQ—
especially when compared against the more traditional script in Figure 2, which applies to one ma-
chine only. Using FayLINQ, this query will also be executed in an efficient, optimized fashion. In
particular, counts will be aggregated, per CPU, in each of the operating system kernels of the clus-
ter; per-machine counts will then be aggregated locally, persisted to disk—redundantly, to multiple
machines for fault-tolerance—and finally aggregated in a tree-like fashion for a final query result.

3. FUNDAMENTAL MECHANISMS
At the core of Fay tracing are safe, efficient, and easily extensible mechanisms for tracing kernel and
user-mode software behavior within a single machine.

3.1 Tracing and Probing
The basis of the Fay platform is dynamic instrumentation that adds function tracing to user-level
processes or the operating system kernel. Fay instrumentation is minimally intrusive: only the first
machine-code instruction of a function is changed, temporarily, while that function is being traced.

Notably, Fay instrumentation uses inline invocations that avoid the overhead of hardware trap instruc-
tions. However, such inline invocations, and their resulting state updates, are necessarily confined to
a single process, or to the kernel, forcing each address space to be traced separately. Therefore, Fay
treats even a single machine as a distributed system composed of many isolated parts.

3.1.1 Tracepoints
Fay provides tracepoints at the entry, normal return, and exceptional exit of the traced functions in a
target address space. All Fay trace events are the result of such function boundary tracing. Fay can
also support asynchronous or time-based tracepoints, as long as they eventually result in a call to an
instrumentable function.

When a tracepoint is triggered at runtime, execution is transferred inline to the Fay dispatcher. The
dispatcher, in turn, invokes one or more probe functions, or probes, that have been associated with
the tracepoint. A probe may be associated with one or more tracepoints, and any number of probe
functions may be associated with each tracepoint. Further details of the Fay dispatcher are described
in Section 3.2 and illustrated in Figure 5.

To enable tracing of an address space, the base Fay platform module must be loaded into the address
space to be traced. This platform module then installs probes by loading probe modules into the target
address space.

3.1.2 Probe Modules
Fay probe modules are kernel drivers or user-mode libraries (DLLs). For both FayLINQ and Power-
Shell, source-to-source translation is used to automatically generate compiled probe modules. (Our
implementation uses the freely available, state-of-the-art optimizing C/C++ compiler in the Windows
Driver Kit [36].)

Figure 4 outlines how Fay probe modules are used for tracing in the kernel address space. A high-level
query is evaluated and compiled into a safe probe module; then, that driver binary is installed into the
kernel. At a kernel function tracepoint, Fay instrumentation ensures that control is transferred to the
Fay dispatcher, which invokes one or more probes at runtime. Finally the probe outputs (partially)
processed trace events for further aggregation and analysis.

Probe modules are subject to the standard Windows access control checks. In particular, only system
administrators can trace the kernel or other system address spaces, and kernel probe modules must
be cryptographically signed for the x86-64 platform. However, this is not enough: bad compiler
setup, malicious input data, or other factors might easily lead to the creation of a flawed probe that
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Visual representations are as in Figure 1—e.g., the star is a tracepoint. Kernel arrows show
probe module installation (going down), dynamic instrumentation (going left), the dispatch of
a tracepoint to a probe function (going right), as well as the flow of trace event data (going up).

would impair system security and reliability. Therefore, subsequent to their generation, probe module
binaries are rewritten and processed to establish that they can be safely loaded and used within the
traced address space. This processing is based on a variant of XFI: a Software-based Fault Isolation
(SFI) technique that is uniquely applicable to both kernel-mode and user-mode code [61, 64, 18].
Section 3.3 gives the details of the simplified XFI mechanisms used in our Fay platform.

Fay probe modules can be written from scratch, in C or C++, ported from legacy code, or even
hand-crafted in assembly code. Fay can also be extended with new computations or data structures,
similarly specified as low-level or native code. Such Fay probe extensions might, for example, include
hash functions for summarizing state, or code for maintaining representative samples of data. Exten-
sions allow enhancing Fay with new primitives without any changes to the platform—and can be
used even from FayLINQ or other high-level queries. Extensions are compiled with probes, and are
subject to the same safety checks; therefore, they raise no additional reliability or security concerns.

Fay resolves symbolic target-module references by making use of debug information emitted at com-
pile time for executable binaries. (Much the same is done in other tracing systems [11, 45].) On the
Windows platform, such “PDB files” are available, and easily accessible through a public network
service, for all components and versions of Windows.

3.1.3 Probe Processing
When triggered at a tracepoint, a probe will typically perform selection, filtering, and aggregation
of trace data. For instance, a probe may count how often a function returns with an error code, or
collect a histogram of its argument values. However, probes are not limited to this; instead, they may
perform arbitrary processing.

In particular, probes might summarize a large, dynamic data structure in the traced address space
using expensive pointer chasing—but do so only when certain, exceptional conditions hold true. Fay
probe extensions for such data traversal may even be compiled from the same code as is used in the
target system. Thus, Fay tracing can make it practical to perform valuable, deep tracing of software
corner cases, and to gather all their relevant system state and execution context when they occur.

Fay probes can invoke an accessor support routine to examine the state of the system. Multiple
accessors are available in a runtime library and can be used to obtain function arguments and return
values, the current CPU, process, and thread identity, CPU cycle counts, etc. A TryRead accessor
allows attempted reading from any memory address, and thereby arbitrary inspection of the address
space. All accessors are simple, and self-contained, in order to prevent probe activity from perturbing
the traced system.

3.1.4 Probe State
For maintaining summaries of system behavior, Fay provides each probe module with its own local
and global memories This mutable state is respectively private to each thread (or CPU in the kernel)
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Fay dispatcher—via a trampoline that executes Foo’s original first instruction and then jumps
to its second instruction.

or global to each probe module. These two types of state allow efficient, lock-free, thread-local data
maintenance, as well as communication between probe functions in the same address space—globally
across the CPUs and threads of the target system.

Both types of mutable probe state are of constant, fixed size, set at the start of tracing. However,
probes may at any time send a trace event with their collected data, and flush mutable state for reuse,
which alleviates the limitations of constant-size state. To reduce the frequency of such trace event
generation, probes can make use of space-efficient data structures (e.g., our Fay implementation
makes use of cuckoo hashtables [19]).

To initialize global and local state, probe modules can define special begin and end probe functions,
invoked at the start and end of tracing. These “begin” and “end” probe functions are also invoked at
thread creation and termination, e.g., to allow thread-local state to be captured into a trace event for
higher-level analysis.

In combination, the above mechanisms allow Fay probes to efficiently implement—from first
principles—tracing features such as predicated tracing, distributed aggregation, and speculative
tracing [11]. In addition, they make it easy to extend Fay tracing with new primitives, such as
sketches [7]. These features are exposed through the high-level Fay language interfaces, and can be
considered during both the optimization of Fay tracing queries and during their execution. Section 5
describes some of our experiences implementing such extended Fay tracing features.

3.1.5 Limitations of Fay Tracepoints and Probes
Compared to popular, mature tracing platforms, our Fay implementation has some limitations that
stem from its early stage of development. For example, while Fay tracing can be used for live, online
execution monitoring (e.g., as in Figure 7), the batch-driven nature of the Dryad runtime prevents
streaming of FayLINQ query results. Also, currently, users of Fay tracing must manually choose
between call and jmp dispatchers, and whether trace events are logged to disk, first, or whether
per-machine analysis happens in a real-time, machine-local Fay aggregation process.

On the other hand, the Fay primitives in our implementation are fundamentally limited to function-
boundary tracing of specially-compiled binary modules, for which debug information is available.
Other tracing platforms also rely on debug information to offer full functionality, and are applied



mostly to properly-compiled or system binaries. Less common is Fay’s lack of support for tracing
arbitrary instructions. However, although supported by both DTrace and SystemTap, per-instruction
tracing can affect system stability and is also fragile when instructions or line numbers change, or
are elided, as is common in optimized production code. Thus, this feature is not often used, and its
omission should not greatly affect the utility of Fay tracing.

To confirm that per-instruction tracing is rarely-used, we performed an extensive review of the pub-
lic discussion forums and available collections of tracing scripts and libraries for both DTrace and
SystemTap. Typical of the per-instruction tracing we could find are examples such as counting the
instructions executed by a process or a function [17], or the triggering of a tracing probe upon a
change to a certain variable [57]. This type of tracing is not likely to be common, since it requires ex-
tensive instrumentation and incurs correspondingly high overhead, and since its goals are more easily
achieved using hardware performance counters or memory tracepoints. Programmer addition of new
debugging messages to already-compiled code is the one example we could find where per-instruction
tracing seemed practical [56]; however, the same can also be achieved by running under a debugger
or, if recompilation is an option, by the addition of calls to empty functions, which Fay could then
trace. Therefore, we have no current plans to extend Fay beyond function-boundary tracing.

Fay supports only disaggregated tracing, even within a single machine: Fay probes have only a
disjoint view of the activity in different address spaces, i.e., the kernel or each user-mode process,
which is then combined by higher-level Fay trace-event processing. Existing tracing platforms such
as DTrace [11] support imperative operations on per-machine shared state, and use hardware-trap-
based instrumentation to access this shared state from both the kernel and any user-mode address
space. We have considered, but decided against, adding Fay support for machine-global probe state,
accessible across all address spaces, implemented via memory mapping or a software device driver.
So far, the distributed nature of Fay tracing has made it sufficiently convenient to get visibility into
user-mode activity by combining trace events from user and kernel address spaces.

3.2 Dispatching Tracepoints to Probes
Fay tracing uses inline invocations to a Fay probe dispatcher, through a call or jump instruction
inserted directly into the target machine code. Some other platforms dynamically insert a kernel
transition, or faulting instruction, to perform tracing [11, 45]. Compared to this alternative, Fay inline
tracing offers greater efficiency, by avoiding hardware traps; similarly, the Ftrace facility recently
added to Linux also uses inline tracing for kernel functions [48].

Fay repurposes Windows hotpatching in a novel manner to modify the machine code at a function
entry point, so that control is transferred to the Fay probe dispatcher. Windows function hotpatching is
an existing operating systems facility, designed to allow incorrect or insecure functions to be replaced
on a running system, without a reboot or process shutdown [34]. Hotpatching performs reliable,
atomic code modification with all CPUs in a well-defined state (e.g., not executing the code being
hotpatched). Previously, hotpatching has been rarely used: since its introduction in 2003, we are not
aware of a generally-available software update from Microsoft that makes use of hotpatching.

Fay uses the hotpatching mechanism to insert, at the start of functions, inline invocations to the Fay
probe dispatcher. This permitted, but unintended use of hotpatching allows Fay to be used for the
pervasive tracing of existing, unmodified production systems.

All currently supported Windows binaries are hotpatch enabled. Hotpatching constrains machine-
code at function entry: six unused bytes must be present before the function, and its first instruction
must be at least two bytes long, and be drawn from a small set of opcodes. Each binary must also
contain a number of hotpatch data slots for pointers to new function versions; a normal binary module
has only 31 such slots, while the kernel has 127. In Fay, these constraints on hotpatch data slots do
not limit the number of tracepoints: Fay tracing is scalable to an arbitrary number of functions.
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Figure 5 shows the machine code of a function Foo after Fay has used hotpatching to modify Foo
to enable its entry, return, and exceptional exit tracepoints. The first instruction of Foo has been
replaced with a two-byte instruction that jumps backwards by six bytes. At the six-bytes-earlier
address, a new instruction has been written that calls the Fay dispatcher. The call is indirect, through
one of the hotpatch data slots of the target module being traced (this indirection allows loading the
Fay platform module anywhere in the 64-bit address space).

As Figure 5 indicates, upon entry the Fay dispatcher looks up a descriptor for the current tracepoint
(shown as t in the figure). Tracepoint descriptors control what probes are triggered and provide
the crucial first instruction that allows the dispatcher to call the traced function. Fay looks up these
descriptors in a space-efficient hashtable [19], and the use of a simpler hashtable, with significantly
more memory, could reduce the cost of this lookup. For threads not being traced, the lookup and use
of descriptors might even be eliminated by using a Fay dispatcher with multiple entry points—one
for each possible first instruction—since different preamble code at each distinct entry point could
instruct the Fay dispatcher how to emulate the effects of a traced function’s first instruction before
passing control to the rest of the function. Fay does not yet implement such elaborations, since we
have found the current lookup efficient enough (about 40 cycles in our measurements).

A Fay tracepoint descriptor contains lists of probe functions to be invoked, as well as other relevant
information—such as the global and local state to be used for each probe. Dispatching is lock free,
but runs with (most) interrupts disabled; descriptor updates are atomically applied at an all-CPU
synchronization barrier.

If the current thread is to be traced, the Fay dispatcher will invoke probe functions both before and
after the traced function as indicated in the tracepoint descriptor lists—subjecting the execution of
each probe to the necessary safety and reliability constraints.

The Fay dispatcher also invokes the traced function itself. For this, the dispatcher creates a new stack
frame with copies of the function’s arguments. Then, the dispatcher uses a pointer from the tracepoint
descriptor to transfer control to a function-specific, executable trampoline that contains a copy of the
traced function’s first instruction, followed by a direct jump to its second instruction.

The Fay dispatcher also registers an exception handler routine, for capturing any exceptional exit of
the function being traced. Fay invokes exceptional exit probes when an exception is unwound past
this handler; once the probes have executed, Fay forwards the exception on to higher stack frames.

Actually, Fay provides multiple dispatcher implementations whose performance and scalability dif-
fers. In particular, depending on the traced function, Fay can save different sets of registers: func-



tions synthesized through whole-program optimizations require preserving all registers, while stable,
externally-accessible functions require saving only a small, non-volatile set of registers.

Figure 5 shows the slowest and most scalable version of the Fay dispatcher. This version hotpatches
a call instruction before the traced function. That call pushes Foo’s address on the stack for
descriptor lookup. This dispatcher is scalable since it requires only one hotpatch data slot (out of
the very limited number of slots). However, the call places a superfluous return address on the
stack, which the dispatcher must eliminate before returning (at the /**/ comment). Unfortunately,
on modern CPU architectures, such stack manipulations can have an adverse performance impact
by disrupting dynamic branch prediction [51]. Therefore, when only a limited number of functions
are traced, Fay will use a faster dispatcher, where hotpatching places a jmp instruction to a dispatch
trampoline. Both dispatchers have low overheads; Section 5 compares their performance.

3.3 Reliability and Safety
Reliability is the paramount goal of the Fay dispatcher and other Fay mechanisms; these must be
correct, and are designed and implemented defensively, with the goal of allowing target systems to
always make progress, and fail gracefully, in the worst case. However, Fay relies crucially on the
safety of probe processing: to the rest of the system, probes must always appear as (almost) side-
effect-free, pure functions—whether written by hand, compiled in an uncertain environment, or even
when crafted by a malicious attacker. To ensure probe safety, previous tracing systems have used safe
interpreters or trusted compilers [11, 45].

Fundamentally, Fay ensures probe safety through use of XFI: one of the recently-developed, low-
overhead SFI mechanisms that are suitable to x86-64 CPUs [18, 61, 64]. XFI is the only SFI mecha-
nism to be applicable even to machine code that runs as part of privileged, low-level systems software.
Thus, Fay can rely on XFI to provide comprehensive constraints on machine code probes, including
flexible access controls and strong integrity guarantees, and yet allow probes to be utilized in any ad-
dress space, including the kernel. As in all SFI systems, safety is enforced through a combination of
inline software guards and static verification of machine code. Below, we outline the characteristics
of the Fay variant of XFI; more details about its underlying policies and mechanisms can be found in
the original XFI paper [18].

Like previous variants, Fay XFI is implemented using Vulcan [54]. However, Fay XFI aims for
simplicity, and avoids complexities—such as “fastpath guards” [18]—as long as doing so retains
acceptable performance. Instead of being fully inlined, Fay XFI guards reside in separate functions,
but are invoked inline with arguments pushed on the stack. While slightly less efficient, this style
leads to minimal code perturbation, which both simplifies XFI rewriting and also facilities debugging
and understanding of probe machine code.

Fay XFI is also customized to its task of enforcing safety properties for Fay probes. Figure 6 shows
a Fay XFI probe module in a target address space (cf. Figure 1 in [18]). Fay probes should be
side-effect-free, and execute only for short periods—to completion, without interruption, serially on
each (hardware) thread—using only the fixed-size memory regions of their local and global state,
and making external invocations only to Fay accessor routines. Thus, upon a memory access, Fay
XFI memory-range guards can compare against only one thread-local and one static region, and need
not consult slowpath permission tables—and, similar, fixed tables can be consulted upon use of a
software call gate.

Fay probes are not unmodified legacy code—they are either newly written, newly ported, or auto-
matically generated. Therefore, Fay XFI does not allow arbitrary C, C++, or assembly code, but
imposes some restrictions on how probes are written. Fay probes may not use recursive code, dy-
namically allocate memory on the stack frame, or make use of function pointers or virtual methods;
these restrictions make XFI enforcement of control-flow integrity trivial, and also reduce the number
of stack-overflow guards necessary, by allowing worst-case stack usage to be computed statically.



Also, Fay probes may not use code that generates or handles exceptions, or use other stack context
saving functionality; such probe code would be very difficult to support at low levels of the kernel and
we have removed the associated XFI host-system support. Finally, Fay probes may not access stack
memory through pointers, so probe code must be converted to use thread-local probe state instead
of stack-resident variables; this simplifies XFI rewriting and verification, and eliminates the need for
XFI allocation stacks. These restrictions do not prevent any functionality, and although they may
result in greater porting efforts for some Fay probe extensions, this is not onerous, since Fay probes
necessarily execute relatively small amounts of code and this code is often automatically generated.

Despite the above simplifications, Fay XFI still enforces all the safety properties of XFI [18]—for in-
stance, constraining machine-code control flow, preventing use of dangerous instructions, restricting
memory access, and thwarting violations of stack integrity.

3.3.1 Thread-local Tracking for Reliability
To ensure reliability, the interactions between Fay and the software it is tracing must always be
benign. Thus, the operation of the Fay dispatcher, probes, and accessors must be self-contained, since
Fay’s invocation of an external subsystem might adversely affect the integrity of that subsystem, or
result in deadlock. For example, while Fay accessor routines may read system state, they must never
invoke system functions with negative side effects.

A thread that is performing Fay dispatching must be treated differently by both the Fay platform and
the system itself. In particular, Fay tracing must not be applied recursively, such as might happen if
Fay were used to trace system functions that are themselves used by code in a Fay accessor routine.
This scenario might happen, e.g., if Fay tracing was applied to mechanisms for trace event transport.

To prevent recursive tracing, Fay maintains a thread-local flag that is set only while a probe is execut-
ing, and that is checked during dispatching. (In the kernel, a small amount of thread-local storage is
available in the CPU control block; in user mode, arbitrary thread-local storage is available.) A sim-
ilar flag allows Fay to efficiently support thread-specific tracing: the common scenario where some
threads are traced, but not others. Depending on the state of these flags for the current thread, the Fay
dispatcher may skip all probes and invoke only the traced function. Fay keeps a count of lost tracing
opportunities due to the Fay dispatcher being invoked recursively on a flagged thread.

Fay does not enforce any confidentiality policy: no secrets can be held from kernel probes. Even
so, Fay kernel probes are subject to an unusual form of memory access control. A probe may write
only to its global or local state, and may only read those regions when dereferencing a memory
address. In addition, probes may use a special TryRead accessor to try to read a value from any
(potentially invalid) memory address; this functionality can be used by probes that perform pointer
chasing, for example. The TryRead accessor sets a thread-local flag that changes pagefault behavior
on invalid memory accesses and prevents the kernel from halting (Section 3.5 gives further details
on its implementation). However, Fay will prevent even TryRead from accessing the memory of
hardware control registers, since such accesses could cause side effects.

Finally, probes must be prevented from executing too long. In the kernel, a special tracing probe is
added by Fay to one of the Windows kernel functions that handles timer interrupts, to detect runaway
probes. This special probe maintains state that allows it to detect if a hardware thread is still running
the same probe as at the previous timer interrupt—and will trigger an exception if a Fay probe runs
for too many timer interrupts in a row.

3.4 Transporting Trace Events
Fay uses Event Tracing for Windows, (ETW) [41] to collect and persist trace events in a standard
log format. ETW is a high-functionality Windows system mechanism that provides general-purpose,
structured definitions for trace events, efficient buffering of trace events, support for real-time trace
consumers as well as efficient persistent logging and access to tracelog files, support for dynamic ad-



dition and removal of producers, consumers, and trace sessions, as well as the automatic provisioning
of timestamps and other metadata.

ETW tracing is lock free and writes trace events to CPU-local buffers. Also, ETW is lossless, in that
the number of outstanding buffers is dynamically adjusted to the rate of event generation—and in the
unlikely case that no buffer space is available, an accurate count of dropped events is still provided.
Finally, the standard, manifest-based ETW tracelog formats allows Fay trace events to be consumed
and processed by a wide range of utilities on the Windows platform.

3.5 Practical Deployment Issues
Our Fay implementation has been crafted to ensure that it can be installed even on production sys-
tems, without a reboot. In particular, we have carefully (and painfully) avoided dependencies on
system internals, and on features that vary across Windows versions. For this, our Fay implementa-
tion sometimes makes use of side-effect-free tracing of system functions such as in our support for
asynchronous tracepoints. In one case we had to change the behavior of Windows: Fay hotpatches the
kernel page fault handler with a new variant that throws an exception (instead of halting execution)
when invalid kernel-mode addresses are accessed during execution of the TryRead accessor.

The use of Fay tracing is subject to some limitations. In particular, Fay requires that target binary
modules have been compiled with hotpatching support; while this holds true for binaries in Windows
and Microsoft server products, it is not the case for all software. Also, kernel tracing with the more
scalable Fay probe dispatcher will require rebooting with kernel debugging automatically enabled;
otherwise, PatchGuard [35] will bugcheck Windows after detecting an unexpected call instruction,
which it disallows in machine-code hotpatches.

Finally, even for Windows system binaries, Fay is currently not able to trace variable-argument
functions—since the Fay dispatcher would then have to create a stack frame of unbounded size for
its invocation of the traced function.

4. LANGUAGES FOR FAY TRACING
We have integrated Fay with PowerShell to provide a traditional scripting interface to tracing, and
also created FayLINQ to provide a LINQ query interface and a declarative, data-parallel approach
to distributed tracing. Both these popular high-level language platforms provide flexible, efficient
means of specifying tracing, in a manner that feels natural—thereby removing the need to introduce
a domain-specific language, as done in other dynamic tracing platforms [11, 45].

We have implemented several Fay support mechanisms that can be utilized both in PowerShell and
FayLINQ, since both are managed code platforms. In particular, these provide for optimized compi-
lation of probe modules, their installation into the kernel, or injection into a user-mode process. These
mechanisms also give access to debug information (from PDBs) for currently executing software—
e.g., to allow symbolic identification of tracepoints in a target binary module, as well as the global
variables, types, enums, etc., of that module. Finally, these mechanisms allow real-time consumption
of ETW trace events, and the custom, type-driven unmarshalling of their contents.

4.1 Fay PowerShell Scripting
Here we give a brief outline of Fay PowerShell scripting. PowerShell is structured around cmdlets,
which are similar to awk scripts operating on streams of objects, and augmented with administration
and monitoring features. In PowerShell, Fay probes are just regular cmdlets, with a few natural
changes in semantics: begin{} blocks execute at the start of tracing, process{} executes at each
tracepoint, variables such as $global:var live in global state, whereas regular variables are thread
local, etc.

When used with Fay support cmdlets, such as Get-FayTrace, tracing scripts are converted to C
code, using source-to-source translation, and compiled and processed into binary XFI probe modules.



Figure 7: Output of a 20-line Fay PowerShell script that every second updates a visual his-
togram of the five most common types (or “tags”) of memory allocations from non-paged kernel
memory. The greatest number of memory allocations are of type ’NV’, indicating they are due
to the NVidia display driver.

Fay makes use of partial evaluation to resolve symbolic reference in PowerShell scripts, as well as
to identify tracepoints and define a specialized probe function for each tracepoint. We have used
PowerShell mostly as a convenient means for ad hoc Fay tracing, like that in Figure 7.

4.2 FayLINQ Queries
FayLINQ integrates the fundamental Fay mechanisms with the LINQ language, as well as the opti-
mizations and large-scale data processing capabilities of DryadLINQ [66]. This combination allows
high-level queries about distributed systems behavior to be applied to—and executed on—the same
cluster of computers.

On both a single machine, and on a cluster, FayLINQ input is naturally modeled as operations on
a concatenated set of trace event streams. Fundamentally, Fay tracing generates multiple, disjoint
streams of ordered trace events, with a separate trace event stream output by each thread in each ad-
dress space. Therefore, FayLINQ tracing consists of the execution of LINQ queries on an unordered,
merged collection of these ordered streams.

Concretely, the FayLINQ implementation proceeds from a single, high-level query to generate an
efficient set of tracepoints, and code for Fay probes that perform extraction, processing, and early
aggregation of trace event data. FayLINQ also produces optimized DryadLINQ query plans and
processing code for both machine-local and cluster-level aggregation and analysis.

The example in Figure 8 helps explain how FayLINQ operates, and give an overview of query exe-
cution. In the query, kernelAllocations constrains the set of tracepoints to those at the entry
of the primary kernel memory allocation function—with the Function extension method operating
like a Where clause. Then, from each tracepoint, the query retrieves the time property and the size
of the allocation, which is the second argument of ExAllocatePool (unfortunately, PDB files do
not contain symbolic argument names). Then, allocIntervalSizePairs is used to collect,
for each tracepoint, which period-length interval it fell into, and integer log2 of its allocation size.
These events are then grouped together into results, and a separate count is made of each group
where both the time and log2 allocation sizes are equal, with these triples output as strings. Impor-
tantly, this final grouping applies to events from all machines, and is implemented in two phases: first
on each machine, and then across all cluster machines.

Distributed tracing can be straightforwardly implemented by emitting trace events for each tracepoint
invocation and collecting and processing those events centrally. One approach would be to use a flat,
wide schema (the union of all possible output fields) to allow the same trace events to be output at any
probe and at any tracepoint. Probes may be very simple, and need only fill out fields in the schema.
Unfortunately, this is not a very viable strategy: flattened schemas lead to large trace events, and



// Get the disaggregated set of kernel allocation trace events.
var kernelAllocations =

PartitionedTable<FayTracepoint>
.Get("fay://clustername)")
.Function(kernel,"ExAllocatePool");

// For the next 10 minutes, map each allocation to a coarser period-based
// timeline of intervals and to log2 of the requested allocation size.
var allocIntervalSizePairs =

from event in kernelAllocations
where event.time < Now.AddMinutes(10)
let allocSize = event.Arg(2) // NumberOfBytes
select new { interval = event.time/period,

size = log2(allocSize)) };

// Group allocations by interval and log2 of the size and count each group.
var results =

from pair in allocIntervalSizePairs
group pair by pair into reduction
select new { interval = reduction.Key.interval,

logsize = reduction.Key.size,
count = reduction.Count() };

// Map each interval/ log2size/count triple to a string for output.
var output =

results.Select( r => r.ToString() );

Figure 8: A FayLINQ query that summarizes the rate of different-sized kernel memory allo-
cation requests over 10 minutes. The output indicates, for each period-length interval, how
often allocation sizes of different magnitude were seen.

the output of trace events at high-frequency tracepoints will incur significant load, which may easily
skew measurements or even swamp the system.

Instead of the above, naive implementation approach, FayLINQ performs a number of steps to opti-
mize the execution of queries like that in Figure 8. At a coarse granularity, these steps are:

Generic Optimizations. First, FayLINQ performs basic DryadLINQ query optimizations, like
dead code removal—notably moving filtering and selection to the leaves of the query plan—i.e.,
towards the source of trace event data, the tracepoints.

Second, since a fay:// data source is used, FayLINQ creates an optimized query plan, which
collects trace events from Fay probes. Like with PowerShell, the query is analyzed (using a form
of partial evaluation) to discover what machines, address spaces, processes, and threads, and what
functions should be traced by Fay.

Greedy Optimizations. Third, the query plan optimizer greedily tries to move operations into
Fay probe functions—as many as possible. For the query in Figure 8, nearly all work can be pushed
into Fay probes at the query plan leaves, since the GroupBy operator can be decomposed into a local
and a global aggregation [65].

Fourth, by default, the plan is modified to materialize Fay probe output, to make trace events persis-
tent and fault tolerant. Fifth, a DryadLINQ plan is built for all remaining query parts. For Figure 8,
this is the final, global aggregation and the computation of the output strings. Sixth, the code for
the Fay probes, and their installation and use, is emitted as a synthetic Dryad input vertex [26].

Query Execution. Figure 9 shows how FayLINQ will efficiently execute the example in Figure 8.
Figure 10 shows the term-rewriting rules used to generate this optimized query plan.
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Figure 9: Optimized plan for the query in Figure 8. Symbols are as in Figure 10 and its legend
(e.g., arrows show data flow).

The dotted line in Figure 9 marks the separation between Fay and DryadLINQ. At runtime, Dryad
input vertices execute, start Fay tracing, and then enter a loop processing the trace events output by
Fay probes. The Fay probes will usually perform some aggregation. The results of the aggregation
are periodically encapsulated in ETW events and flushed to the cluster-level aggregation pipeline.
Normally the aggregation results are flushed when the internal fixed-size hashtables are filled. How-
ever, the user can control the message frequency by specifying that aggregated event statistics should
be flushed at least every k probe invocations. The payload of the ETW events is unmarshalled and
decoded into .NET objects, which are further transported using the standard DryadLINQ transport
mechanisms using reliable Dryad channels. The DryadLINQ part of the query runs on the clus-
ter, taking full advantage of the fault-tolerance, scheduling and optimizations of the Dryad runtime,
which is proven to scale to large clusters.

4.2.1 Probe Code Generation
The FayLINQ implementation optimizes the query plan to move data filtering, transformation, and
aggregation (including GroupBy-Aggregate) from the LINQ query into Fay probes. Currently, the
following LINQ statements can be executed by Fay probes: Where, Select, Aggregate, and
GroupBy—as well as the many special cases of these operators, such as Sum, Count, Average,
Distinct, Take, etc. Query parts that cannot be executed by probes are executed by DryadLINQ,
on the cluster. This includes the aggregates of data from multiple machines—which, DryadLINQ
will automatically perform in a tree-like fashion, when that improves performance [65].

In our current implementation, not all uses of the above LINQ operators can be transformed to execute
in Fay probes. The operators must use only values (basic types and structures) and must only call
static methods for which a Fay accessor or extension is available. However, Fay probes can invoke any
lambda expression that uses only these basic primitives. For example, sketch-based tracing (similar
to that in Chopstix [7]) can be expressed simply as

clusterTraceEvents
.Where(event => HCA(event.time/period, event))

where HCA is a function in an optimized, native-code Fay extension that sketches all events in each
distinct time period, by updating mutable probe state. Section 5.2.3. describes further how Fay
extensions can implement tracing primitives such as sketching.

FayLINQ generates C code using syntax-directed translation from the optimized LINQ query plan.
The translation proceeds naturally—e.g., Where translates to if statements, etc. More interest-
ingly, at each tracepoint invocations, the C code may modify probe state to perform incremental
updates. Since LINQ queries are essentially database views, this implementation of FayLINQ query
evaluation is much like an optimized incremental view update, and makes use of database-like mech-
anisms [24, 65]. For example, in the query of Figure 8, at each probe invocation, the time interval
and log(allocation size) are computed immediately and used to update counts in a hashtable.
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Figure 10: Term-rewriting from LINQ to Fay probes, with circles and arrows representing
operators and data flow. The input operation merges the trace events from tracepoints and
performs user-specified computations on that merged stream. Term-rewriting optimizations
push operations closer to data sources. The first and second rewrite rules push filtering and
selection ahead of merging. The last rewrite rule transforms counting into a sum of partial
counts; the third rule generalizes this last one and rewrites aggregations on partial groups.

Notably, GroupBy, when followed by aggregation, can often be translated using Fay hashtable
updates. As mentioned above, this pattern—often known as map-reduce [14]—can often be de-
composed into a local and global GroupBy operations [65]. The local reduction may then be Fay
hashtable updates, while the global reduction remains in DryadLINQ. Importantly, fixed-size hashta-
bles may be used for local aggregation, since the global aggregation can “fix” incomplete aggrega-
tions. When the hashtables are full, and insertion fails, Fay probes can output a trace event containing
the hashtable data and clear it out for reuse.

5. EXPERIMENTS AND EVALUATION
We have used Fay to diagnose system behavior on both single machines and on medium-size clusters.
For example, as we started using Fay we immediately noticed a performance issue where the built-in
Windows command shell was CPU-bound doing continuous system calls for no good reason. Below,
we retell our diagnosis of this issue as a detailed, anecdotal case study of using Fay tracing.

The utility of tracing and monitoring platforms has long since been established through both pub-
lished results as well as through previous anecdotal case studies. In many cases, such as in the
DTrace study in Section 9 of [10], an issue is first raised by some external monitoring tool that can
be applied continuously to live production systems (such as an offline log analysis tool or a low-
overhead, statistical profiler [9]). After such initial identification by other means, dynamic tracing
may be used for detailed, manual or semi-automatic behavior analysis. Even then, tracing overheads
may be too high for production systems, which often forces the issue to be reproduced on non-critical
systems before it can be analyzed.

Fay tracing can be efficient enough to overturn the above paradigm and allow continuous dynamic
tracing of live production systems, both before and during the analysis of any detected issues. With
this in mind, the Fay primitives have been used to extend the existing tracing mechanisms in one of
Microsoft’s mature, scalable enterprise transaction platforms. This platform performs transactions
on separate threads and, during normal operation, Fay tracing allows the properties of a random
sample of transactions to be closely monitored with very low overhead. Fay tracing has little global
performance impact (e.g., it does not force kernel traps), and threads that are not being traced spend



Windows System Call Count Callers

NtRequestWaitReplyPort 1,515,342
cmd.exe
conhost

NtAlpcSendWaitReceivePort 764,503 CSRSS
NtQueryInformationProcess 758,933 CSRSS
NtReplyWaitReceivePort 757,934 conhost

Table 1: The processes in the command shell case study, and a count of how often they made the
relevant system calls. The two calling NtRequestWaitReplyPort did so about equally often.

few extra CPU cycles at each tracepoint, thanks to thread-specific Fay dispatching. If an issue arises,
and needs to be analyzed, Fay tracing can be dynamically directed to detailed behavior analysis, and
more functions and threads, usually at only a modest, acceptable increase in overhead.

The rest of this section starts off with a Fay case study, presented in the informal, anecdotal style of
studies in the literature [10]. Instead of enumerating further tracing applications, we subsequently
examine the flexibility of Fay tracing through the implementation of a variety of different distributed
software monitoring strategies. Finally, we present experimental measurements that establish the
efficiency of the Fay tracing primitives, the scalability of the Fay platform to fully-loaded clusters,
and the benefits of FayLINQ query optimizations.

5.1 A Fay Performance-diagnosis Case Study
In some of our earliest Fay tracing experiments, we interactively used the Windows command shell
(cmd.exe) while observing a live, real-time chart of machine-wide system-call frequencies much like
that in Figure 7. Surprisingly, we observed very high frequencies for some tasks where we expected
to see few system calls, such as copy * NUL, or type large.txt in a minimized window, or
dir /S >NUL. We used Fay to investigate, as described below, and to ensure reproducibility we
used only public information available outside Microsoft, such as public symbol files.

Outputting a 16 MB file of ASCII text in a minimized console window, using type, produced around
3.75 million system calls, and was CPU bound for a significant amount of time. We used a Fay query
to aggregate by calling process, with Table 1 showing the dominant four system calls. To see how
these three processes interacted, we combined their system calls and arguments into a single view,
using a Fay query for a temporal join (see Section 5.2.4 and [5]). The query showed a repeated
pattern: cmd.exe blocks on a port request to conhost; then, conhost blocks on a port request to
the CSRSS service, which queries for process information; then, CSRSS blocks on a port send to
conhost, which unblocks it; finally, conhost makes a request back to cmd.exe, unblocking it. These
were clearly Windows Local Procedure Calls (LPC) spanning the three processes [49].

Fay tracing showed some LPC rounds to be a result of the well-documented WriteConsole func-
tion outputting a line (of 80 characters or less) to the console, However, we saw an even greater
number of LPC rounds caused by a function FileIsConsole. By Fay tracing of arguments, we
could establish that, for every single line of output, the command shell would check twice whether
stdout was directed to the console window, or not, at the cost of two LPC rounds and many context
switches and system calls. Even more surprisingly, we saw those checks and LPC rounds continue to
occur when output was directed to a file—causing nearly a million system calls when we used type
to output our 16 MB text file to the special file NUL, for example.

We also used Fay tracing to investigate other frequent system calls, by collecting and counting
their distinct arguments, return values, and user-mode stack traces. This data indicated that the
calls to NtQueryInformationProcess in Table 1 were due to an internal CSRSS function,
IsConhost, inspecting an undocumented property (number 49) of the cmd.exe process. The argu-
ments and return values strongly indicated that CSRSS was retrieving this property, on every LPC
round, to verify that an intermediary conhost was still hosting the console for an originating cmd.exe.



The above behavior also occurs for commands run in shell scripts, which often redirect large amounts
of output to files or to NUL. The most frequent system calls simply retrieve information from the
kernel, and user-mode processes can typically cache such data or read it via a “shared user data
page” (like the one exposed by the Windows kernel) that gives a read-only, up-to-date view of data
maintained elsewhere [49]. Thus, concretely, our Fay case study identified potential reductions in
the LPC rounds and context switches required for each line of command shell output, which could
eliminate most of the system calls in Table 1. However, command shell output is usually not a critical
performance issue, and its implementation in Windows appears tuned for reliability and simplicity;
thus, while insightful, our observations are not sufficient to justify immediate changes to user-mode
or kernel-mode code.

5.2 Reimplementing Tracing Strategies
To stress the generality of Fay tracing, we reimplemented several existing, custom tracing strategies
on top of the Fay tracing platform. This reimplementation was done with minimal effort, by leverag-
ing Fay extensions and the high-level queries of FayLINQ. We used two DryadLINQ clusters: one
with 12 machines with dual 2GHz AMD Opteron 246 processors and 8GB of memory, and another
with 128 machines with two 2.1GHz quad-core AMD Opteron 2373EE processors and 16GB of
memory, both running Windows Server 2008 R2 Enterprise. Below we describe our implementations
and (in some cases) the results of applying these monitoring strategies to our clusters.

5.2.1 Distributed Performance Counters
A common strategy for distributed monitoring is to count the events generated across all machines
of a cluster. Fay tracing can trivially implement this strategy by applying the appropriate aggrega-
tion operations to any metrics on the trace events available to probes on a single machine. Unlike
traditional performance counters, Fay tracing allows both user-controllable and efficient aggregation.
For instance, with small changes, the query shown on page 2 can provide per-process, per-thread,
and per-module statistics on all cluster activity in both user-mode and the kernel. Such monitoring
of memory allocation cannot be achieved with traditional Windows performance counters, even on a
single machine.

5.2.2 Automatic Analysis of Cluster Behavior
Several recent systems have applied automatic machine-learning techniques to extract useful infor-
mation from activity signatures collected across a cluster [30, 63]. We used FayLINQ to perform
an analysis similar to that of Fmeter [30] on our cluster, while it executed an unrelated map-reduce
workload (N-gram generation).

A single FayLINQ query sufficed to express the entire trace collection, the k-means clustering of the
collected traces, and the analysis of the traced workload using those machine-learning results. This
query collects periodic system-call-frequency histograms for the 402 system calls in the Windows
kernel, at a granularity of around 1 second. Collecting this information does not measurably affect
CPU utilization or machine performance, since FayLINQ synthesizes efficient, stateful kernel probes
that maintain counts per system call. The data-analysis part of the FayLINQ query reduced the dataset
dimensionality by applying k-means clustering (with k set to 5) on the histograms, using published
distributed machine-learning techniques for DryadLINQ [33]. Then, the FayLINQ query associated
the workload activity in each period with the closest of the five centroids resulting from the k-means
clustering. Finally, the FayLINQ query output results into a visualization tool to produce the chart in
Figure 11.

Figure 11 shows activity on all machines, during execution of the map-reduce workload. All activity
periods are associated with their most similar k-means centroid, each of which has a unique color and
a (manually-added) label: io, idle, memory, cpu, or outlier. By comparing against the map-reduce
job plan, it can be seen that Figure 11 precisely captures the workload’s different processing stages,
as annotated at the bottom of the figure—including the use of five machines in the first stage, and
ten machines for the second, and the final stages of io-intensive data reduction. Here, we compared
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Figure 11: The result of FayLINQ analysis of cluster behavior while executing a map-reduce
job. This 2D plot shows the results of automatic k-means clustering of system-call histograms
collected periodically across all machines. The X axis shows time, machines are on the Y axis,
and each period is colored according to its representative k-means centroid.

against ground truth from a known map-reduce job plan. However, in most cases, no such explicit
plan exists, and similar FayLINQ analysis could clarify the processing phases of even complex,
opaque distributed services.

5.2.3 Predicated and Windowed Trace Processing
Some systems implement stateful or non-deterministic tracing primitives that are not so easily ex-
pressed as pure, functional LINQ queries. Nonetheless, FayLINQ can utilize Fay’s extensibility
to provide such primitives and incorporate their results into tracing queries. Concretely, users of
FayLINQ can implement any probe extension by providing an arbitrary C function, or make use of
our library of such extensions.

Fay extensions can use optimized machine code to evaluate the state of a traced system in any man-
ner, whether complex or stateful. Thus, Fay can offer a efficient, general form of predication and
speculation, and support tracing that cannot even be expressed in language-restricted platforms like
DTrace [11]. To achieve similar functionality, other tracing platforms require the evaluation code to
be fully trusted—thereby leaving the traced system fully exposed to any reliability and security issues
in that code.

In particular, we have implemented Fay probe extension functions for Chopstix sketches [7], to
provide statistical, non-uniform sampling of low- and high-frequency events with low overhead.
FayLINQ sketching uses a hashtable of counters to ensure that trace events are output in logarith-
mic proportion to the total number of occurrences. While our sketching library implementation hides
some complexity, FayLINQ users need only invoke a simple HCA function to use the library, much
as in the code on page 16.

We have also implemented probe extensions for temporal processing on trace event streams, such
as windowed (sliding or staggered) computations. For example, our simple MovingAverage ex-
tension for computing moving averages is used in the below query, which emits all kernel memory
allocations that are 10 times larger than the current local moving average:

cluster.Function("ExAllocatePoolWithTag")
.Select(event => GetArg(2)) // allocation size
.Select(sizeArg => new {

average = MovingAverage(sizeArg),
size = sizeArg })

.Where(alloc => alloc.size > 10*alloc.average);



Solaris OS X Fedora
Experiment Fay DTrace DTrace STap

km 220 1717 1805 1129
um call 197 1557 2565 9009
um jmp 155
um call deep 431 1683 2813 9384
um jmp deep 268

Table 2: Overhead in CPU cycles per call to a traced function. Here, km is kernel mode, um is
user mode, and deep builds a 20-deep stack before each call. Fay dispatches using inline call
or jmp instructions; other platforms trap to the kernel.

5.2.4 Tracking Work Across Distributed Systems
Several distributed monitoring platforms track all the activity performed for work items, as those
items are processed by different parts of the system [5, 50]. Often, such tracking is done via pas-
sive, distributed monitoring, combined with “temporal joins” to infer dynamic dependencies and
flow of work items. Fay tracing can easily support such monitoring, by encoding temporal joins as
recursive queries that transitively propagate information, and by iterating to convergence. We have
used FayLINQ to track work in a distributed system by monitoring and correlating sent and received
network packets, to analyze the traffic matrix of DryadLINQ workloads.

5.2.5 Tracing Across Software Abstractions
We used Fay to redo a study of the Windows timer interfaces and mechanisms; the original study [43]
was done by modifying Windows source code. Starting with the low-level, kernel timer interfaces
KeSetTimer, KeSetTimerEx, and KeCancelTimer, we used FayLINQ to trace timer us-
age. For each use, we grouped by return addresses on the call stack and sorted to identify common
callers, thereby identifying the small number of modules and functions that are the primary users of
KeSetTimer, etc. We then iterated, by creating a larger, recursive FayLINQ query, predicated to
generate trace events only in certain contexts, and discovered 13 sets of timer interfaces in Windows,
such as ZwUserSetTimer. Close, manual inspection revealed that those interfaces were based on
five separate timer wheel implementations [59].

5.3 Performance Evaluation
To assess the efficiency and scalability of our Fay implementation, we measured the performance of
Fay tracing and its mechanisms for instrumentation, inline dispatching, and safe probe execution. The
experiments ran on an iMac with a 3.06GHz Intel E7600 CPU and 8GB of RAM. We configured this
machine to run 64-bit versions of Windows 7 Enterprise, Mac OS X v10.6, Fedora 15 Linux (kernel
version 2.6.40-4.fc15), and Oracle Solaris 11 Express, in order to directly compare Fay tracing against
DTrace, on two platforms, and against SystemTap (version 1.5/0.152) on Linux.

5.3.1 Microbenchmarks
To measure the cost of dispatching and executing an empty probe, we created a user-mode mi-
crobenchmark that contains an empty function foo, which it calls in a tight loop. We measured
its running time both with, and without, Fay tracing of foo using an empty probe. We also created
a microbenchmark that invokes a trivial system call in a tight loop, and where we traced the kernel-
mode system call handler. (We used the getpid system call, except on Windows where we used
NtQuerySystemInformation with an invalid parameter to minimize the work it performed.)

We also wanted to measure the effects of branch-misprediction caused by the stack manipulation of
the Fay call dispatcher (see Section 3.2). Therefore, we created variants of the microbenchmarks
that call foo via a sequence of 20 nested functions—forcing 20 extra stack frames to be unwound at
each foo tracepoint.
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Measured Fay XFI slowdown 184% 552% 1387%
XFI slowdown from [18] 101% 346% 798%

Table 3: Slowdown due to XFI for three benchmarks. The Fay XFI variant is much simpler,
but has nearly twice the overhead.

Solaris OS X
Fay DTrace DTrace

Traced functions 8001 31998 9341
Function calls (millions) 60 253 306
Running time w/tracing 28.0 103.2 149.6
Slowdown 2.8x 17.2x 26.7x

Table 4: Instrumenting all kernel functions to test scalability.

Table 2 shows the results of our microbenchmarks, with time measurements converted to CPU cycle
counts. Fay takes around 200 cycles per call and, as expected, dispatching using jmp is noticeably
faster than Fay call dispatcher. If a thread is not being traced, this work can be cut in half, and the
Fay call dispatcher adds only about 107 cycles per call. In both of these cases, the hashtable lookup
of tracepoint descriptors accounts for roughly 40 cycles. The experiments for DTrace and SystemTap
were run using function boundary tracing and per-CPU collection and aggregation. Compared to Fay,
the other tracing platforms generally required a bit less than an order-of-magnitude more cycles.

Next, we compare the execution time of three benchmark probes with and without XFI rewriting,
summarizing the results in Table 3. This experiment replicates parts of Table 1 in [18] (slowpath with
read and write protection). Our overhead is larger than that in [18], which is not surprising, since we
targeted simplicity in our implementation. However, Fay XFI performance still compares favorably
to that of safe interpreters like those used in DTrace [47].

5.3.2 Scalability and Impact of Optimizations
We have used Fay to trace all the 8,001 hotpatchable functions in the Windows kernel and increment
a per-CPU counter at each tracepoint, to count the total kernel function invocations. Such tracing
does not occur often, but can be useful. An example application, that has seen practical use in other
tracing platforms, is the tracing of all kernel activity due to a specific kernel module, such as a
network driver, or a specific interrupt handler [17], and the generation of function call graphs for
later visualization [16].

Table 4 displays the results of tracing a workload that copied all the RFC text files between ramdisk
directories, deleted the new copies, and repeated this a fixed number of times. Fay scales very well,
and using it to trace the vast majority of Windows kernel functions leaves the machine perfectly
responsive and about 2.8 times slower on a benchmark that spends 75% of its time executing kernel
code. Notably, the scale of this experiment creates a worst-case scenario for Fay performance: the
Fay call dispatcher adds an extra stack frame on every kernel function invocation, and suffers a
branch-prediction miss on every function return.

The slowdown factors for DTrace are significantly higher, on both Solaris and Mac OS X. However,
slowdown factors are not directly comparable, since Fay and DTrace are instrumenting different
operating systems. Trying to repeat the experiment with SystemTap resulted in a hung Linux kernel,
apparently due to a long-standing, well-known SystemTap bug [58].

We tested the scalability, robustness, and optimizations of Fay tracing by utilizing our 128-machine,
1024-core cluster for a benchmark that makes 50 million memory allocations per machine. In the
benchmark, each thread allocates and clears 10 heap-memory regions, of a random size between 1



byte and 16 kilobytes, yields with a Sleep(0), clears and frees the 10 regions, and then loops.
We measured all configurations of partitioning per-machine work over 1, 2, 5, or 10 processes and
1, 5, 10, 50, 100, 500, or 1000 concurrent threads in each process. These configurations ran on the
entire, dedicated cluster, spreading 6.4 billion allocations between 128 to 1,280,000 threads, each at
100% CPU utilization when running. The benchmark took between 30 seconds and 4 minutes to run,
depending on the configuration—not counting unpredictable delays and high variance caused by the
cluster’s job scheduler.

Using a FayLINQ query to measure total allocated memory added an overhead of 1% to 11% (mean
7.8%, std.dev. 3.8%) to the benchmark running time. The numbers matched our expectation: per
allocation, the benchmark spent approximately a couple of thousand cycles, to which Fay tracing
added a couple of hundred cycles, as per Figure 2—but, as the number of processes and threads grew,
increased context switches and other costs started masking some of Fay’s overhead. The time to
initialize tracing, and install Fay probes, grew as processes increased from 1 to 10, going from 1.5 to
7 seconds. Whether or not Fay tracing was enabled, the benchmark had similar variance in CPU time
(mean std.dev. 2%, max std.dev. 6%) and wall-clock time (mean std.dev. 10%, max std.dev. 33%),
both per-process and per-thread.

We exercised the fault-tolerance of Fay tracing by randomly killing threads, processes, or machines
running the benchmark. When a thread dies, all its thread-local Fay probe state is lost, if it has not
already been sent as a trace event. Machine-local Fay aggregation continued unimpeded by failure
of benchmark threads or processes. Even upon the failure of machines, the Dryad fault-tolerance
mechanisms would ensure that cluster-level aggregation continued. Thus, the results of our FayLINQ
query were perturbed in proportion to our violence. In addition, the data lost for any thread could
be bounded by having Fay probes periodically send off their data as ETW trace events. For our
benchmark FayLINQ query, probe state was sent as trace events every 100 memory allocations, at
the cost of 1% extra Fay tracing overhead.

In the limit, a trace event might need to be sent at every tracepoint invocation, if the work of a tracing
query was completely unsuited to Fay probe processing. To assess the benefits of early aggrega-
tion and FayLINQ optimizations, we modified our benchmark to measure such high-frequency trace
events. With nearly half-a-million Fay trace events a second, and no probe processing, the bench-
mark’s tracing overhead increased to between 5% and 163% (average 67%, std.dev. 45%). However,
most of those trace events were lost, and not accounted for in the result of our FayLINQ query.

These lost trace events were surprising, since our Fay implementation minimizes the risk of data
loss, both by dynamically tuning ETW buffer size, and also by running time-critical Fay activity
like trace-event processing on Windows threads with high enough priority. Upon inspection, we
discovered that the real-time, machine-local FayLINQ aggregation process that converts ETW trace
events to .NET objects—rather slowly, on a single thread—was completely unable to handle the high
event rate. FayLINQ can be manually directed to stream trace events directly to disk, into ETW log
files, processed by later, batch-processing parts of the query plan. We attempted this next, but failed
again: each ETW log file record is about 100 bytes, which at 50 million events, in less than four
minutes, exceeded our disk bandwidth. Even though consuming data at high rates is intrinsically
difficult, these results clearly indicated that FayLINQ was lacking in its support for high-event-rate
tracing. So, we enhanced Fay with a custom, real-time ETW consumer thread that efficiently streams
just the Fay payload of ETW events (4 bytes in our benchmark) directly to disk. After this, FayLINQ
could return correct query results, by generating a plan that processes the disk files subsequent to the
benchmark run.

To further evaluate the benefits of FayLINQ query-plan optimizations, we reran the experiment from
Section 5.2.2 with the term-rewriting in Figure 10 turned off. While Fay tracing previously had no
measurable performance effects, unoptimized tracing significantly increased the workload comple-
tion time, e.g., due to the addition of (a near-constant) 10% of CPU time being spent on kernel-mode
trace event processing. Also, the lack of early-aggregation optimizations lead to a high event rate



(more than 100,000 events/second, for some phases of the workload). Thus, we again had to direct
FayLINQ to create query plans that stored trace events first on disk, and finished processing later.
Even then, several times more data was received and processed at the higher-levels of the FayLINQ
aggregation pipeline.

6. RELATED WORK
Fay is motivated by the many attractive benefits of the DTrace platform [11], while Fay’s fundamental
primitives are more like those of SystemTap [45] and Ftrace [48].

Fay makes use of, and integrates with a number of technologies from Microsoft Windows [49], in-
cluding Event Tracing for Windows [41], PowerShell [55], Vulcan [54], Hotpatching [34], Structured
Exception Handling [44], and the Driver Model [40].

Dynamic Instrumentation Systems Fay is related to several systems that perform dynamic in-
strumentation: KLogger [20], PinOS [8], Valgrind [39], scalable tracing on K42 [62], Ftrace and
SystemTap on Linux [45, 48], Solaris DTrace [11], the NTrace prototype [42], and Detours for the
Win32 interface [25].

The Fay probe dispatcher is related to new tracing tools that make use of inline mechanisms, not
traps. On Linux, Ftrace [48] provides tracing based on fast, inline hooks placed by compiling the
kernel with special flags. On Windows, the NTrace research project leverages hotpatching [42], but
does so via a custom, modified kernel. Compared to Fay, the Ftrace and NTrace mechanisms offer
more limited functionality, are likely to be less efficient, and provide neither safe extensibility nor a
high-level query interface.

Safe Operating Systems Extensions Fay is an example of a system that implements safe operat-
ing systems extensions using software-based techniques [6]. This is not a new idea. Indeed, Fay
has striking similarities to the SDS-940 Informer profiler developed at the end of the 1960’s [15].
Other systems and techniques for providing safe system extensibility include Typed Assembly Lan-
guage [37], Proof-Carrying Code [38], as well as Software-based Fault Isolation (SFI) [61], and its
implementations in MiSFIT [52], Native Client [64], and similar systems [18].

Declarative Tracing and Debugging The Fay integration with DryadLINQ is related to several prior
efforts to support declarative or relational queries of software execution traces. In particular, Fay is
related to declarative tracepoints [12], PQL [31], and PTQL [23], and also to work in aspect-oriented
programming [3].

In the trade-off between creating a domain-specific language and using a generic language, such as
LINQ, we have opted towards the latter. Embedded knowledge about the semantics of traces (e.g.,
time, procedure nesting, etc.) can make the evaluation of some queries more efficient. Probes should
be able to aggregate and reduce data as much as possible, while relegating expensive computations
to external systems. Here, we believe that FayLINQ strikes a good balance.

Large-scale, Distributed Tracing Large-scale, distributed tracing, data collection and debug-
ging [28, 53] is a highly active area, with several existing, attractive systems, and one deployed
across a billion machines [22]. Of particular relevance are recent systems, like Chopstix [7], and
Flight data recorder [60], as well as their predecessor DCPI [9] and its recent distributed ana-
logue GWP [46]. Similarly, earlier work such as Magpie [5] on tracing requests across activities
has recently been extended to the datacenter [50]. Finally, also highly relevant is work from the
high-performance community for tracing in parallel systems [27, 32], and the techniques of stream-
processing platforms [4]. Flume [21] is a log collection system that allows the transformation and
filtering of log data, similar in some aspects to simple FayLINQ queries.



7. CONCLUSIONS
Fay is a flexible platform for the dynamic tracing of distributed systems. Fay is applicable to both
user- and kernel-mode activity; our Fay implementation for x86-64 Windows can be applied even to
live, unmodified production systems. Users can utilize Fay tracing through several means, which in-
clude traditional scripting. Fay users can also safely extend Fay with new, efficient tracing primitives,
without affecting the reliability of traced systems.

Distinguishing Fay from previous tracing platforms is its disaggregated execution, even within a
single machine, as well as its safe, efficient extensibility, and its deep integration with a high-level
language and distributed runtime in FayLINQ—all of which facilitate large-scale execution trace
collection and analysis.

Building on the above, FayLINQ provides a unified, declarative means of specifying what events to
trace, as well as the aggregation, processing, and analysis of those events. As such, FayLINQ holds
the potential to greatly simplify the investigation of performance, functionality, or reliability issues in
distributed systems. Through benchmarks and experiments, we have demonstrated the efficiency and
flexibility of Fay distributed tracing, and also shown how a few simple FayLINQ queries can offer
the same functionality as that provided by custom mechanisms in other tracing platforms.
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