Secure Network Provenance

Wenchao Zhou
University of Pennsylvania

Arjun Narayan
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

Qiong Fei

University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Micah Sherr
Georgetown University

ABSTRACT

This paper introduces secure network provenance (SNP), a novel technique that enables
networked systems to explain to their operators why they are in a certain state — e.g.,
why a suspicious routing table entry is present on a certain router, or where a given cache
entry originated. SNP provides network forensics capabilities by permitting operators to
track down faulty or misbehaving nodes, and to assess the damage such nodes may have
caused to the rest of the system. SNP is designed for adversarial settings and is robust
to manipulation; its tamper-evident properties ensure that operators can detect when
compromised nodes lie or falsely implicate correct nodes.

We also present the design of SNOOPY, a general-purpose SNP system. To demonstrate
that SNOOPY is practical, we apply it to three example applications: the Quagga BGP
daemon, a declarative implementation of Chord, and Hadoop MapReduce. Our results
indicate that SNOOPY can efficiently explain state in an adversarial setting, that it can be
applied with minimal effort, and that its costs are low enough to be practical.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-Communication Networks— Dis-
tributed Systems; D.4.5 [Software]: Operating Systems— Reliability

General Terms
Algorithms, Design, Reliability, Security

Keywords

Accountability, Byzantine faults, Distributed systems, Evidence, Provenance, Security

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SOSP '11, October 23-26, 2011, Cascais, Portugal.

Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

1. INTRODUCTION

Operators of distributed systems often find themselves needing to answer a diagnostic
or forensic question. Some part of the system is found to be in an unexpected state —
for example, a suspicious routing table entry is discovered, or a proxy cache is found to
contain an unusually large number of advertisements. The operators must determine the
causes of this state before they can decide on an appropriate response. On the one hand,
there may be an innocent explanation: the routing table entry could be the result of a
misconfiguration, and the cache entries could have appeared due to a workload change.
On the other hand, the unexpected state may be the symptom of an ongoing attack: the
routing table entry could be the result of route hijacking, and the cache entries could be
a side-effect of a malware infection. If an attack or misconfiguration is discovered, the
operators must determine its effects, such as corrupted state or configuration changes on
other nodes, so that these nodes can be repaired and the system brought back to a correct
state.

In this paper, we consider forensics in an adversarial setting, that is, we assume that
a faulty node does not necessarily crash but can also change its behavior and continue
operating. To be conservative, we assume that faults can be Byzantine [24], i.e., a faulty
node can behave arbitrarily. This covers a wide range of faults and misbehavior, e.g.,
cases where a malicious adversary has compromised some of the nodes, but also more
benign faults, such as hardware failures or misconfigurations. Getting correct answers to
forensic queries in an adversarial setting is difficult because the misbehaving nodes can lie
to the querier. For example, the adversary can attempt to conceal his actions by causing
his nodes to fabricate plausible (but incorrect) responses to forensic queries, or he can
attempt to frame correct nodes by returning responses that blame his own misbehavior on
them. Thus, the adversary can gain valuable time by misdirecting the operators and/or
causing them to suspect a problem with the forensic system itself.

Existing forensic systems are either designed for non-adversarial settings [43, 51] or require
some trusted components, e.g., a trusted virtual-machine monitor [3, 21], a trusted host-
level monitor [27], a trusted OS [29], or trusted hardware [7]. However, most components
that are available today are not fully trustworthy; OSes and virtual machine monitors have
bugs, which a powerful adversary could exploit, and even trusted hardware is sometimes
compromised [20]. We argue that it is useful to have alternative techniques available that
do not require this type of trust.

We introduce secure network provenance (SNP), a technique for building forensic systems
that can operate in a completely untrusted environment. We assume that the adversary
may have compromised an arbitrary subset of the nodes, and that he may have complete
control over these nodes. On the one hand, this very conservative threat model requires
some compromises: an SNP system can only answer queries about observable network
state—i.e., state that has directly or indirectly affected at least one correct node—and
its responses can be incomplete, although the missing parts are always clearly identified.
On the other hand, an SNP system provides strong, provable guarantees: it ensures that
an observable symptom of a fault or an attack can always be traced to a specific event—
passive evasion or active misbehavior—on at least one faulty node, even when an adversary
attempts to prevent this.

Two existing concepts, data provenance and tamper-evident logging, can provide a starting
point for building SNP systems. Data provenance [4, 51] tracks and records data depen-
dencies as data flows through the system. In the context of distributed systems, network
provenance [51] is captured as a global dependency graph, where vertices are data items
that represent state at a particular node, and edges represent local processing or mes-
sage transmissions across nodes. This graph can then be used to answer forensic queries.

Tamper-evident logging [17] can record data in such a way that forgeries, omissions, and
other forms of tampering can be detected and proven to a third party.

However, as is often the case in computer security, a simple layering of these two con-
cepts fails to achieve the desired goal. If an existing network provenance system, say
ExSPAN [51], were combined with a system like PeerReview [17] that supports tamper-
evident logging, an adversary could potentially subvert the resulting system by attacking
it twice. The first attack would corrupt the system’s internal data structures; this would
require a protocol violation that PeerReview could detect, but not diagnose or repair.
With the data structures suitably damaged, the adversary could then carry out the sec-
ond attack without further protocol violations, and without leaving visible traces in the
provenance system. Thus, the second attack would be invisible.

We have designed SNOOPY, a system that provides secure network provenance by com-
bining evidence-based distributed query processing with a novel provenance model that
is specially designed with fault detection in mind. We have formalized SNP’s security
properties, and we have proven that SNOOPY satisfies them. To demonstrate SNOOPY’s
practicality and generality, we have implemented a prototype, and we have applied it to
three example applications: the Quagga BGP daemon [35], a declarative implementation
of Chord [26], and Hadoop MapReduce [12]. Our evaluation demonstrates SNOOPY’s abil-
ity to solve real-world forensic problems, such as finding the causes and effects of BGP
misconfigurations, DHT routing attacks, and corrupt Hadoop mappers; our results also
show that SNOOPY’s costs (additional bandwidth, storage, and computation) vary with
the application but are low enough to be practical. In summary, we make the following
contributions:

e A provenance graph for causal, dynamic, and historical provenance queries that is
suitable for SNP (Section 3);

e SNP, a method to securely construct network provenance graphs in untrusted envi-
ronments (Section 4);

e The design of SNOOPY, a system that implements SNP for the provenance graph
presented earlier (Section 5);

e A proof of correctness for SNOOPY (sketched here, and included in the extended
version of this paper [50]);

e An application of SNOOPY to Quagga, Chord, and Hadoop MapReduce (Section 6);
and

e A quantitative evaluation (Section 7).

2. OVERVIEW

Figure 1 illustrates the scenario that we are addressing in this paper. An administrator,
here called Alice, is operating a distributed system — perhaps a cluster, a corporate network,
or a content distribution system. At some point, Alice observes some unexpected behavior
in the system and decides to investigate whether the behavior is legitimate or perhaps a
symptom of a fault or an attack. Our goal is to enable Alice to query the system about
the causes and effects of the unexpected behavior, and to obtain reliable results.

To achieve this goal, we extend each node in the system with a monitoring component
that maintains some forensic information. We refer to the system that is being monitored
as the primary system and to our additional components as the provenance system. To be
useful to Alice, the provenance system should have the following two high-level properties:

e When the queried behavior is legitimate, the system should return a complete and
correct explanation.

Why did that route
change just now?

Alice

Figure 1: Motivating scenario. Alice is running a distributed system and
observes some unexpected behavior that may indicate a fault or an attack.

e When the queried behavior is a symptom of a fault or misbehavior, the explanation
should tie it to a specific event on a faulty or misbehaving node.

By behavior, we mean a state change or a message transmission on any node. We assume
that Alice knows what behavior is legitimate, e.g., because she knows which software the
system was expected to run.

2.1 Threat model

Since we would like to enable Alice to investigate a wide range of problems, ranging from
simple misconfigurations to hardware faults and even clandestine attacks, we conservatively
assume Byzantine faults [24], i.e., that an adversary may have compromised an unknown
subset of the nodes, and that he has complete control over them. Thus, the non-malicious
problems are covered as a special case. We assume that the adversary can change both
the primary system and the provenance system on these nodes, and he can read, forge,
tamper with, or destroy any information they are holding. We also assume that no nodes
or components of the system are inherently safe, i.e., Alice does not a priori trust any node
other than her own local machine.

Handling such a broad range of faults is challenging because Alice cannot be sure that
any data she is receiving is actually correct. When she queries a compromised node, the
adversary can cause that node to lie or equivocate. In particular, he can try to forge a
plausible explanation for the symptoms Alice has observed, or he can try to make it appear
as if the symptoms were caused by a different node. If this is not prevented, Alice could
overlook the attack entirely or waste time trying to repair the wrong nodes.

2.2 Approach

Our approach to this challenge is to construct a distributed data structure called the
provenance graph which, at a high level, tracks how data flows through the system. Data
provenance itself is not a new concept—it has been explored by the database and the system
community [4, 10, 19, 29, 47, 51]—but most existing provenance systems are designed for
non-adversarial settings and lack features that are necessary for forensics. For example,
existing systems focus on explaining state that exists at query time (“Why does 7 exist?”),
which would allow an adversary to thwart Alice’s investigation simply by deleting data
that implicates him. To support forensics, we additionally provide historical queries (“Why
did 7 exist at time t?”) and dynamic queries (“Why did 7 (dis)appear?’); to assist with
recovery, we also provide causal queries (“What state on other nodes was derived from

777), which can be used to determine which parts of the system have been affected and
require repair.

Our key contribution, however, is to secure the provenance graph. Ideally, we would like
to correctly answer Alice’s queries even when the system is under attack. However, given
our conservative threat model, this is not always possible. Hence, we make the following
two compromises: first, we only demand that the system answer provenance queries about
behavior that is observable by at least one correct node [15]; in other words, if some of
the adversary’s actions never affect the state of any correct node, the system is allowed to
omit them. Second, we accept that the system may sometimes return an answer that is
incorrect or incomplete, as long as Alice can a) tell which parts of the answer are affected,
and she can b) learn the identity of at least one faulty node. In a forensic setting, this
seems like a useful compromise: any unexpected behavior that can be noticed by Alice is
observable by definition, and even a partial answer can help Alice to determine whether a
fault or misbehavior has occurred, and which parts of the system have been affected.

2.3 Provenance and confidentiality

If Alice can query any datum on any node, she can potentially learn the full state of
the entire system. Throughout this paper, we will assume that Alice is authorized to
have this information. In centrally managed systems, there are typically at least some
individuals (e.g., the system administrators) who have that authority. Examples of such
systems include academic or corporate networks as well as infrastructure services—such
as Akamai’s CDN—that are physically distributed but controlled by a single entity.

In systems without central management, it is sometimes possible to partition the state
among different managers. For example, in Amazon’s Elastic MapReduce service, the
owner of a given MapReduce job could be authorized to issue queries about that specific
job while being prevented from querying jobs that belong to other customers. In other
cases, abstractions can be used to hide confidential details from unauthorized queriers.
SNP includes extensions to the provenance graph that can selectively conceal how certain
parts of a node’s state were derived. As discussed in Section 3.4, the resulting graph can
be queried without disclosing the node’s actual computation.

2.4 Strawman solutions

It is natural to ask whether our goals could be achieved by using some combination of
an existing fault detection system, such as PeerReview [17], and/or an existing network
provenance system, such as ExSPAN [51]. However, a simple combination of these two
systems is insufficient for the following reasons.

Individually. In isolation, neither of the two systems can achieve our goals. PeerReview
can detect when nodes deviate from the algorithm they are expected to run, but it provides
no mechanisms for detecting or diagnosing problems that result from interactions between
multiple nodes (such as an instance of BadGadget [11] in interdomain routing), or problems
that are related to nodes lying about their local inputs or deliberately slowing down their
execution. ExSPAN captures the interactions among nodes via provenance, but cannot
detect when compromised nodes lie about provenance.

Layering. A natural approach to addressing ExSPAN’s security vulnerabilities is simply
to layer ExSPAN over PeerReview. However, this approach also fails to achieve the de-
sired security guarantees. First, PeerReview reports faults with a certain delay; thus, a
compromised node has a window of opportunity in which it can corrupt the provenance
graph. Even if detection is nearly instantaneous, simply identifying the faulty node is not
sufficient: since the graph is itself distributed, effects of the corruption can manifest in
parts of the provenance graph that are stored on other nodes, and there is no way for the

layered approach to detect this easily. This means that once a fault is detected by Peer-
Review, the results of further provenance queries (e.g., to find other compromised nodes,
or to locate corrupted state) can no longer be trusted, and the entire provenance system
is rendered unusable.

Our integrated solution. Achieving hard guarantees for secure provenance requires
rethinking both ExSPAN and PeerReview. Instead of layering one system over the other,
we tightly integrate the process of provenance generation and querying with the underly-
ing fault detection system. Providing secure network provenance involves a fundamental
redesign of ExSPAN’s query and provenance model to enable tamper-evident query pro-
cessing and the generation of evidence against faulty nodes, which can be used for further
investigations.

In the following sections, we not only demonstrate that our integrated approach achieves
the desired high-level properties introduced earlier at a cost that is low enough to be
practical, we also experimentally validate its usefulness by performing forensic analysis
on several existing applications. An additional benefit of this tight integration and our
richer provenance model is that we can naturally support richer forensic queries, such as
historical, dynamic, and causal provenance queries.

3. PROVENANCE GRAPH

In this section, we introduce our system model, and we define an ‘ideal’ provenance graph
G, based on the true actions of each node. Of course, if faulty nodes can lie about their
actions or suppress information, a correct node that is processing a provenance query may
not be able to reconstruct G entirely. However, as we will show in the following sections,
SNP can reconstruct a close approximation G, of G.

3.1 System model

For ease of exposition, we adopt a system model that is commonly used in database
systems to reason about data provenance. In this model, the state of the primary system
is represented as tuples, and its algorithm is represented as derivation rules [51], which
describe how tuples are derived from the system’s inputs. Few practical systems are
explicitly built in terms of tuples and derivation rules, but this is not required to apply SNP:
in Section 5.3, we describe three general techniques for extracting tuples and derivations
from existing systems, and in Section 6 we report how we applied these techniques to
Quagga, Chord, and Hadoop MapReduce.

Each node in a distributed system has its own set of tuples, and derivation rules can
span multiple nodes. For example, the state of a router » might consist of tuples such as
1link(@r,a) to show that r has a link to a, or route(@r,b,c) to show that » knows a route
to b on which the next hop is c¢. Here, 1ink and route are the names of specific relations,
and @r indicates that the tuple is maintained on r. The lower-case letters are constants;
we later use upper-case letters for variables. Where the specific relation does not matter,
we simply write 7@n to denote a tuple 7 on a node n.

Tuples can either be base tuples or derived tuples. Base tuples correspond to local inputs
that are assumed to be true without derivations, e.g., a list of physical links that is input
to a routing protocol. Derived tuples are obtained from other tuples through a derivation
rule of the form 7@n «— 71@ny A 72@Qng A - - - A 7,@ny. This is interpreted as a conjunction:
tuple 7 should be derived on n whenever all 7; exist on their respective nodes n;, and 7
should then continue to exist until at least one of the 7; disappears. (If a tuple has more
than one derivation, we can distinguish between them using a logical reference counter.)
When a derivation rule spans multiple nodes, the nodes must notify each other of relevant
tuple changes: if a node i has a rule that depends on a tuple 7@y, j must send a message

+7 to ¢ whenever 7 is derived or inserted as a base tuple, and j must send —7 to ¢ whenever
7 is underived or removed. We require that all derivations are finite and have no cyclic
dependencies. This can be achieved by carefully writing the derivation rules, and it holds
for our three example applications.

We assume that each node applies its rules deterministically. Thus, we can model the
expected behavior of a node i as a state machine A;, whose inputs are incoming messages
and changes to base tuples, and whose outputs are messages that need to be sent to other
nodes. An ezxecution of the system can then be represented as a sequence of message
transmissions, message arrivals, base tuple insertions, and base tuple deletions. We say
that a node i is correct in an execution e if i’s outputs in e are legal, given A; and i’s
inputs in e. Otherwise we say that ¢ is faulty in e.

Routing example. The derivation rule route(@R,C,B) « 1ink(@R,B) A
route(@B,C,D) expresses network reachability in a router: a router R has route to
C via B (route(@R,C,B)) whenever it has a link to another router B (1ink(@R,B)) that
already has a route to C' via some third router D (route(@B,C,D)). Here, R, B, C, and D
are variables that can refer to any router. If we declare the 1ink tuples to be base tuples
and add another rule to say that each router has a route to its immediate neighbors, the
resulting system implements a simplified form of path-vector routing [26].

3.2 Vertices and edges

Having explicit derivation rules makes it very easy to see the provenance of a tuple: if a
tuple 7 was derived from other tuples 71,..., 7%, then 7’s immediate provenance simply
consists of all the 7; taken together. To capture transitive provenance, we can define, for
any execution e, a provenance graph G(e) = (V(e), E(e)), in which each vertex v € V(e)
represents a state or state change, and each edge (v1,v2) indicates that v; is part of the
provenance of v2. The complete explanation for the existence of a tuple 7 in e would then
be a subtree that is embedded in G(e) and rooted at the vertex that corresponds to 7.
The leaves of this subtree consist of base tuple insertions or deletions, which require no
further explanation.

V(e) consists of twelve vertex types. The following seven types are used to represent local
states and state changes:

e INSERT(n,T,t) and DELETE(n,T,t): Base tuple 7 was inserted/deleted on node n at
time t;

e APPEAR(n,T,t) and DISAPPEAR(n, T,t): Tuple 7 appeared/disappeared on node n at
time t;

e EXIST(n, T, [t1,t2]): Tuple 7 existed on node n during interval [¢1, ¢2]; and

e DERIVE(n, 7, R,t) and UNDERIVE(n, 7, R,t): Tuple 7 was derived/underived on n via
rule R at time ¢.

In contrast to other provenance graphs, such as the one in [51], the graph G we present here
has an explicit representation for state changes, which is useful to support dynamic queries.
G also retains information about tuples that no longer exist, which is necessary for historic
queries; note particularly that vertices such as DELETE, UNDERIVE, and DISAPPEAR would
not be necessary in a provenance graph that contains only extant tuples. The timestamps
t should be interpreted relative to node n.

The remaining five vertex types are used to represent interactions between nodes. For the
purposes of SNP| it is important that each vertex v has a specific node that is ‘responsible’
for it. (We will refer to this node as HOST(v).) To achieve this property, derivations and

underivations from remote tuples must be broken up into a sequence of smaller steps that
can each be attributed to a specific node. For example, when a rule 71@Qi « 7@j is
triggered, we do not simply connect 7i’s DERIVE vertex to m2’s APPEAR vertex; rather,
we say that the provenance of 71’s derivation was i’s belief that 72 had appeared on j,
which was caused by the arrival of +72 on 4, the transmission of +72 by j, and finally the
appearance of 72 on j. Thus, if j’s message is later found to be erroneous, i’s belief—and
thus its derivation—is still legitimate, and the error can be attributed to j. The specific
vertex types are the following:

e SEND(n,n’,+7,t): At time ¢, node n sent a notification to node n’ that tuple T has
appeared/disappeared; and

® RECEIVE(n,n’,+7,t): At time ¢, node n received a message from node n’ that tuple
7 has appeared/disappeared.

e BELIEVE-APPEAR(n,n’,7,t) and BELIEVE-DISAPPEAR (n,n’,7,t): At time ¢, node n
learned of the (dis)appearance of tuple 7 on node n';

e BELIEVE(n,n’, T, [t1,t2]): During [t1,?2], node n believed that tuple T existed on
node n’;

Finally, we introduce a color for each vertex v € V(e). Colors are used to indicate whether
a vertex is legitimate: correct vertices are black, and faulty vertices are red. For example,
if a faulty node ¢ has no tuple 7 but nevertheless sends a message +7 to another node, T@Qj
has no legitimate provenance, so we use a red SEND vertex to represent the transmission
of +7. In Section 4.2, we will introduce a third color, yellow, for vertices whose true color
is not yet known.

3.3 Example: Minimum cost routing

As a simple example, consider the network depicted on the right,
which consists of five routers that are connected by links of dif-
ferent costs. Each router attempts to find the lowest-cost path to
router d using a MinCost protocol. There are three types of tuples:
1ink(@X,Y,K) indicates that router X has a direct link to router Y
with cost K; cost(@X,Y,Z,K) indicates that X knows a path to Y
via Z with total cost K; and bestCost(@X,Y,K) indicates that the
cheapest path known by X to Y has cost K. The 1ink tuples are base
tuples because they are part of the static configuration of the routers (we assume that
routers have a priori knowledge of their local link costs, and that links are symmetric),
whereas cost and bestCost tuples are derived from other tuples according to one of three
derivation rules: each router knows the cost of its direct links (R1); it can learn the cost of
an advertised route from one of its neighbors (R2); and it chooses its own bestCost tuple
according to the lowest-cost path it currently knows (R3).

Figure 2 shows an example of a provenance tree for the tuple bestCost (@c,d,5). This tuple
can be derived in two different ways. Router ¢ knows its direct link to d via 1ink(@c,d,5),
which trivially produces cost(@c,d,d,5). Similarly, router b derives cost(@b,d,d,3) via
its direct link with d, and since no other path from b to d offers a lower cost, b produces
the tuple bestCost(@b,d,3). b then combines the knowledge along with 1ink(@b,c,2) to
derive cost(@c,d,b,5) and communicates it to c.

3.4 Constraints and ‘maybe’ rules

We now introduce two extensions to the provenance graph. The first extension is a second

type of rule, called a ‘maybe’ rule and written 7Qn Jnoybe T1@Qny A ... A Tk@nyg, which

stipulates that the tuple 7 on node n may be derived from tuples 71 @Qnq, ..., 7,@ng, but

EXIST(c, bestCost(@c,d,5), [t5=min(t3,t4), now])
/>

APPEAR(c, bestCost(@c,d,5), R3,t4) APPEAR(c, bestCost(@c,d,5), R3, t3)
DERIVE(c, bestCost(@c,d,5), R3, t4) DERIVE(c, bestCost(@c,d,5), R3, t3)

APPEAR(c, cost(@c,d,d,5), t4) BELIEVE-APPEAR(c, b, cost(@c,d,b,5), t3)

DERIVE(c, cost((?c,d,d,S), R1, t4) RECEIVE(c, b, +cgst(@c,d,b,5), t3)
APPEAR(c, link(@c,d,5), t4) SEND(b, ¢, +cost(@c,d,b,5), t2)
INSERT(c, link(@c,d,5), t4) APPEAR(b, cost(@c,d,b,5), R2, t2)

DERIVE(D, cosf@q b s) 2, 2)

EXIST(b, link(@b,c,2), [t1, now]) APPEAR(b, bestCost(@b,d,3), t2)
APPEAR(b, link(@b,c,2), t1) DERIVE(b, bestCost(@b,d,3), R3, t2)
INSERT(b, link(@b,c,2), t1) APPEAR(b, cost(@b,d,d,3), t2)

DERIVE(b, cost(?b,d,dﬁ), R1, t2)
APPEAR(b, link(@b,d,3), t2)

INSERT(b, link(@b,d,3), t2)

Figure 2: Provenance of bestCost(@c,d,5) at c

that the derivation is optional. In other words, as long as all of the underlying tuples are
present, node n is free to decide whether or not to derive 7, and it is free to change its
decision while the underlying tuples still exist. The rule merely describes 7’s provenance
if and when it exists.

There are at least two situations in which ‘maybe’ rules are useful. The first involves a node
on which some rules or tuples are confidential. In this case, the node can be assigned two
sets of rules: one full set for the actual computation (without ‘maybe’ rules) and another
to define provenance, in which the confidential computation is replaced by ‘maybe’ rules.
The second set can then be safely revealed to queriers. Another situation involves a node
with a black-box computation, for which only the general dependencies are known. For
example, a node n might choose a tuple 7 from a set of other tuples, but the details of
the decision process might not be known (e.g., because it is performed by a third-party
binary). In this case, ‘maybe’ rules can be used to infer provenance by observing the set
of tuples: if all the 7; exist, we cannot predict whether 7 will appear, but if 7 does appear,
it must have been derived from the ;.

The second extension is intended for applications where the presence of constraints prevents
us from modeling the state as completely independent tuples. For example, given tuples o
and (3, an application might derive either a tuple v or a tuple §, but not both. Modeling
this with disjunctive rules would lose important information: if tuple § replaces tuple
v, the appearance of § and the disappearance of + are not merely independent events,
they are causally related. Thus, the explanation of §’s appearance should include the
disappearance of 7. In G, we represent this by a direct edge between the corresponding
APPEAR and DISAPPEAR vertices.

3.5 Graph construction

Conceptually, we can think of the provenance graph G(e) as being constructed incre-
mentally as the execution e unfolds — each new derivation, tuple insertion or deletion,
or message transmission/arrival causes some new vertices to be added and/or existing
BELIEVE and EXIST vertices to be updated. In practice, our implementation does not store
the vertices and edges themselves; rather, it records only enough information to securely
construct the subgraphs of G(e) that are relevant to a given query.

The extended version of this paper [50] specifies an algorithm that computes G(e) for any
execution e. We do not present this algorithm here due to lack of space, but we briefly
state three of its key properties. The first property says that the graph can be constructed
incrementally:

Theorem 1 If an ezecution e1 is a prefix of an execution ez, then G(e1) is a subgraph of

G(ez).

This holds because, at least conceptually, G(e) contains vertices and edges for all tuples
that have ever existed; vertices can be added but not removed. (Of course, our practical
implementation has only limited storage and must eventually ‘forget’ about old vertices
and edges.) Theorem 1 makes it possible to answer queries while the system is still running,
without risking an inaccurate result. Graph construction is also compositional:

Theorem 2 To construct the vertices v € V(e) with HOST(v) = 14, it is sufficient to run
the algorithm on the events that have occurred on i.

Briefly, this holds because G has been carefully designed to be partitionable by nodes, and
because derivations from remote tuples (which span multiple nodes) have been split into
several steps that can each be attributed to a specific node. Compositionality is crucial
for a scalable implementation because it implies that each node’s subgraph of G can be
reconstructed independently. Thus, we need only reconstruct those subgraphs that are
relevant for a given query.

Finally, the graph construction algorithm uses the colors appropriately:

Theorem 3 All the vertices v in G(e) with HOST(v) = i are black if, and only if, i is
correct in e.

Thus, if we encounter a red vertex in the provenance graph, we know that the corresponding
node is faulty or has misbehaved. The proofs for these theorems are included in [50].

4. SECURE NETWORK PROVENANCE

The definition of the provenance graph G in the previous section assumes that, at least con-
ceptually, the entire execution e of the primary system is known. However, in a distributed
system without trusted components, no single node can have this information, especially
when nodes are faulty and can tell lies. In this section, we define SNP, which constructs an
approximation G, of the ‘true’ provenance graph G that is based on information available
to correct nodes.

4.1 Using evidence to approximate G

Although each node can observe only its own local events, nodes can use messages from
other nodes as evidence to reason about events on these nodes. Since we have assumed
that messages can be authenticated, each received message m is evidence of its own trans-
mission. In addition, we can demand that nodes attach some additional information ¢(m),
such as an explanation for the transmission of m. Thus, when a provenance query is issued

on a correct node, that node can collect some evidence ¢, such as messages it has locally
received, and/or messages collected from other nodes. It can then use this evidence to
construct an approximation G, (€) of G(e), from which the query can be answered. For the
purposes of this section, we will assume that ¢(m) describes the sender’s entire execution
prefix, i.e., all of its local events up to and including the transmission of m. Of course,
this would be completely impractical; our implementation in Section 5 achieves a similar
effect in a more efficient way.

4.2 Limitations

When faulty nodes are present, we cannot always guarantee that G, (e) = G(e). There
are four fundamental reasons for this. First, ¢(m) can be incorrect; for example, a faulty
node can tell lies about its local inputs. As a human investigator, Alice may be able to
recognize such lies (so there is still value in displaying all the available information), but
it is not possible to detect them automatically, since nodes cannot observe each other’s
inputs. Thus, the corresponding vertices do not appear red in G,. Note, however, that a
faulty node cannot lie arbitrarily; for example, it cannot forge messages from other nodes.

Second, ¢(m) can be incomplete. For example, if two faulty nodes secretly exchange
messages but otherwise act normally, we cannot guarantee that these messages will appear
in G, because the correct nodes cannot necessarily obtain any evidence about them. We
can, however, be sure that detectable faults [16] are represented in the graph. Briefly, a
detectable fault is one that directly or indirectly affects a correct node through a message,
or a chain of messages. Recall that, in our motivating scenario, we have assumed that Alice
has observed some symptom of the fault; any fault of this type is detectable by definition.

Third, faulty nodes can equivocate, i.e., there can be two messages mi; and me such that
p(ma1) is inconsistent with p(ms2). If a correct node encounters both m; and me, it can
detect the inconsistency, but it is not clear which of them (if any) is correct and should
appear in G,. One approach is to liberally use the color red for each vertex that is
involved in an inconsistency. However, this can lead to an excessive amount of red coloring
on equivocating nodes, which limits the usefulness of G,. Another approach, which we
adopt here, is to arbitrarily accept one of the explanations as true, e.g., the one that
appears first in €, and to allow black for the corresponding vertices. Alice can influence
this choice by reordering the messages in e.

Finally, if ¢ is evaluated on demand, ¢(m) can be unavailable. For example, a correct node
that is trying to evaluate a provenance query on e might ask the sender of some m € ¢
for ¢(m) but might not receive a response. This situation is ambiguous and does not
necessarily indicate a fault — for example, the queried node could be slow, or the response
could be delayed in the network — so it is not a good basis on which to color a vertex
red. However, the only way to avoid it reliably would be to proactively attach ¢(m) to
every message, which would be prohibitively expensive. Instead, SNP uses a third color
(yellow) for vertices whose color is not yet known. Yellow vertices turn black or red when
the response arrives. If a vertex v remains yellow, this is a sign that HOST(v) is refusing
to respond and is therefore faulty.

4.3 Definition: SNP

We say that an approximation G, of G is monotonic if G, (¢) is a subgraph of G, (e + €)
for additional evidence €. This is an important property because it prevents G, from
changing fundamentally once additional evidence becomes available, which could invalidate
responses to earlier queries.

We define secure network provenance (SNP) to be a monotonic approximation G, of a
provenance graph G that has the following two properties in an untrusted setting. G, is

accurate if it faithfully reproduces all the vertices on correct nodes; in other words, if a
vertex v on a correct node appears in G, (€) then v must also exist in G, be colored black,
and have the same predecessors and successors. G, is complete if, given sufficient evidence
e from the correct nodes, a) each vertex in G on a correct node also appears in G, (¢), and
b) for each detectably faulty node, G, (€) contains at least one red or yellow vertex.

We also define a primitive called MICROQUERY that can be used to navigate a SNP
graph.! MICROQUERY has two arguments: a vertex v, and evidence € such that v € G, (e).
MICROQUERY returns one or two color notifications of the form BLACK(v), YELLOW(v), or
RED(v). If two notifications are returned, the first one must be YELLOW(v). MICROQUERY
can also return two sets P, and S, that contain the predecessors and successors of v in
G, (¢€), respectively. Each set consists of elements (v;, €;), where ¢; is additional evidence
such that v; and the edge between v; and v appear in G, (e + ¢;); this makes it possible to
explore all of G, by invoking MICROQUERY recursively. We also require that MICROQUERY
preserve accuracy, that is, if HOST(v) is correct, it must return BLACK(v), as well as P,
and S,.

4.4 Discussion

MICROQUERY is sufficient to achieve the goals we stated in Section 2. Any system behavior
that Alice can observe (such as derivations, messages, or extant tuples) corresponds to
some vertex v in the provenance graph. Alice can then recursively invoke MICROQUERY to
learn the causes or effects of v. To learn the causes of v, Alice can start at v and navigate
the graph backwards until she arrives at the legitimate root causes (i.e., base tuples) or
at some vertex that is colored red. To learn the effects of v, Alice can navigate the graph
in the forward direction. The completeness of SNP ensures that, when a detectable fault
has occurred, even an adversary cannot prevent Alice from discovering it. The accuracy of
SNP ensures that the adversary cannot cause Alice to believe that a correct node is faulty.

Note that, if v is a vertex on a faulty node, it is possible that MICROQUERY returns only
YELLOW (v), and nothing else. This is a consequence of the final limitation from Section 4.2,
and it can prevent Alice from identifying all faulty nodes, since she may not be able to
navigate ‘past’ a yellow vertex. However, Alice can still discover that a fault exists, and
she can identify at least one faulty or misbehaving node. At worst, this provides a starting
point for a more detailed investigation by supplying evidence against the faulty node. If
the faulty node is able to be repaired and its prior observable actions can be verified to
conform to its expected behavior, then the node can be recolored black, and subsequent
MICROQUERYs will identify whether faults exist(ed) on other nodes.

5. THE SNOOPY SYSTEM

We next present the design of SNOOPY, a system that implements secure network prove-
nance for the provenance graph G that was defined earlier in Section 3.

5.1 Architecture

SNoOOPY consists of three major building blocks: a graph recorder, a microquery module,
and a query processor (Figure 3). The graph recorder extracts provenance information
from the actions of the primary system (Section 5.3) and stores it in a tamper-evident log
(Section 5.4). The microquery module (Section 5.5) uses the information in this log to
implement MICROQUERY; it uses authenticators as a specific form of evidence.

The query processor accepts higher-level (macro) queries, such as simple provenance
queries, but also causal, historical, or dynamic queries, and answers them by repeatedly

MICROQUERY returns a single vertex; provenance queries must invoke it repeatedly to
explore G,. Hence the name.

Users Primary system Provenance system Alice

4 ;)

\
Query processor = t;i i

Graph Microquery
_ : recorder module

P S

Application

P S

- J

Network

Figure 3: Architecture of a single SNOOPY node

invoking MICROQUERY to retrieve the relevant part of the provenance graph. In some pri-
mary systems, this graph can be very large; therefore, queries can be parametrized with a
scope k, which causes the query processor to return only vertices that are within distance k
of the queried vertex. For a discussion of scope in an actual usage scenario, see Section 7.3.

5.2 Assumptions and requirements
SNoOPY makes the following assumptions:

1. A message sent from one correct node to another is eventually received, if retrans-
mitted sufficiently often;

2. Each node i has a certificate that securely binds a keypair to the node’s identity;

3. Nodes have access to a cryptographic hash function, and the signature of a correct
node cannot be forged;

4. In the absence of an attack, messages are typically received within at most time
Tprop;

5. Each node has a local clock, and clocks are synchronized to within Agjock;

6. Apart from the ‘maybe’ rules, the computation on each node is deterministic; and

7. Queriers are allowed to see any vertex and any edge in the provenance graph.

The first three assumptions are needed for the tamper-evident log. Assumption 2 prevents
faulty nodes from changing their identity and from creating fictitious nodes; it could be
satisfied by installing each node with a certificate that is signed by an offline CA. As-
sumption 3 is commonly assumed to hold for algorithms like RSA and SHA-1. The next
two assumptions are for simplicity; there are ways to build tamper-evident logs without
them [17]. Both Tprop and Agjock can be large, e.g., on the order of seconds. The sixth
assumption is needed to efficiently store and verify the provenance graph; it is also required
for certain BFT systems [6], and it can be enforced for different types of applications [17],
including legacy binaries [13]. The final assumption was already discussed in Section 2.3.

5.3 Extracting provenance

To generate the provenance graph, SNOOPY must extract information about events from
the application to which it is applied. Provenance extraction (or the more general prob-
lem of correlating changes to network state based on incoming/outgoing messages) is an
ongoing area of active research [29, 30] that is largely orthogonal to the main focus of this

paper. In SNOOPY, we have found the following three techniques useful for extracting
provenance for the target applications that we have examined:

Method #1: Inferred provenance. SNOOPY can infer provenance by transparently
tracking data dependencies as inputs flow through the system. Inferred provenance can
be applied when the dependencies are already explicitly captured in the programming
language. We have applied this method to a version of the Chord DHT written in a
declarative language (Section 6.1).

Method #2: Reported provenance. Following the approach from [29], applications
can explicitly call methods in SNOOPY to report data dependencies. This requires mod-
ifications to the source code; also, key parts of the application must be deterministic to
enable the querier to verify that provenance was reported correctly. We have applied this
method to the Hadoop MapReduce system (Section 6.2).

Method #3: External specification. When black-box applications cannot use either
of the previous two approaches, SNOOPY can rely on an external specification of how
the application’s outputs are derived from its inputs. SNOOPY can then generate the
provenance graph by observing the inputs and outputs. We have applied this method to
the Quagga BGP daemon (Section 6.3).

5.4 Graph recorder
The graph recorder stores the extracted provenance information securely at runtime, so
that it can later be used by the microquery module when a query is issued.

Recall from Section 3 that our provenance graph G = (V, E) is designed so that each
vertex v € V can be attributed to a specific node HOST(v). Thus, we can partition the
graph so that each v € V is stored on HOST(v). To ensure accuracy, we must additionally
keep evidence for each cross-node edge, i.e., (vi,v2) € E with HOST(v1) # HOST(v2).
Specifically, HOST(v1) must be able to prove that HOST(v2) has committed to vz, and vice
versa, so that each node can prove that its own vertex is legitimate, even if the other node is
compromised. Finally, according to assumption 6, each node’s subgraph of G is completely
determined by its inputs, its outputs, and the behavior of its ‘maybe’ rules; hence, it is
sufficient to store messages, changes to base tuples, and any (un)derivations that directly
involve a ‘maybe’ rule. When necessary, the microquery module can reconstruct the node’s
subgraph of G from this information.

In the following, we will write o;(z) to indicate a signature on z with i’s private key, and
mi(z,y) to indicate a check whether z is a valid signature on y with ¢’s private key. H(-)
stands for the hash function, and || for concatenation.

Logs and authenticator sets: SNOOPY’s log is a simplified version of the log from
PeerReview [17]. The log A; of a node ¢ consists of entries of the form ey := (t&,yx, ck),
where t; is a timestamp, yi is an entry type, and ci is some type-specific content. There
are five types of entries: SND and RCV record messages, ACK records acknowledgments, and
INS and DEL record insertions and deletions of base tuples and, where applicable, tuples
derived from ‘maybe’ rules. Note that log entries are different from vertex types. Each
entry is associated with a hash value hy = H(hk—1 || tr || yx || ck) with ho := 0. Together,
the hy form a hash chain. A node i can issue an authenticator ap = (ti, hi, oi(tk || hr)),
which is a signed commitment that ex (and, through the hash chain, ei,...,ex—1) must
exist in A;. Each node i stores the authenticators it receives from another node j in its
authenticator set U; ;.

Commitment: When a node ¢ needs to send a message m (47 or -7) to another node
j, it first appends a new entry e, := (tz,SND,(m,j)) to its local log. Then it sends
(m,hg—1,tz,0i(tz || hz)) to j. When a node j receives a message (m,a,b,c), j calculates
hl, := H(a||b]|sND|| (m, 7)) and then checks whether the authenticator is properly signed,
ie., mi(c, (b]|hL)), and whether t, is within Ao+ Tprop of its local time. If not, j
discards the message. Otherwise, j adds (¢s, hl,c) to its authenticator set Uj; ;, appends
an entry e, := (k,RCV, (m,i,a,b,¢)) to A;, and sends (ACK, tq, hy—1,ty,0;(ty || hy)) back
to <.

Once i receives (ACK, a, b, ¢, d) from j, it first checks its log to see whether there is an entry
ez = (a,SND, (m, 7)) in its log that has not been acknowledged yet. If not, it discards the
message. i then calculates hy, := H(b||c||RCV || (M, 4, he—1,ts, 0i(ts || he))), and checks
mi(d, (c||hy)) and ty is within Ageek+Tprop of its local time. If not, ¢ discards the
message. Otherwise, ¢ adds (c, hy,,d) to its authenticator set U;; and appends an entry
e: := (t,ACK,a, b, c,d) to its log.

If ¢ does not receive a valid acknowledgment within 2-Tprop, it immediately notifies the
maintainer of the distributed system. Any such notification is a clear indication of a fault:
at least one of 7, j, or the connection between them must be faulty. Once the maintainer
acknowledges the notification, the problem is known and can be ignored for the purposes
of forensics. However, if the maintainer has not received a notification and a query later
uncovers a SND without a matching ACK, SNOOPY can color the corresponding SEND vertex
red because the sender is clearly faulty. Without the notification mechanism, this situation
would be ambiguous and could not be reliably attributed to i or j.

Retrieval: The graph recorder implements a primitive RETRIEVE(v, al) which, when in-
voked on 4 := HOST(v) with a vertex v and an authenticator a}, of i, returns the prefix® of
the log in which v was generated. In essence, RETRIEVE implements the function ¢ from
Section 4 but evaluates it on demand. Typically, the prefix RETRIEVE returns is the prefix
authenticated by af, but if v is an EXIST or BELIEVE vertex that exists at ey, the prefix
is extended to either a) the point where v ceases to exist, or b) the current time. (The
special case is necessary because an existing or believed tuple can be involved in further
derivations between e; and the time it disappears, so its vertex may acquire additional
outbound edges.) If the prefix extends beyond ey, ¢ must also return a new authenticator
that covers the entire prefix. A correct node can always comply with such a request.

5.5 Microquery module

The microquery module implements MICROQUERY (v, €). At a high level, this works by 1)
using € to retrieve a log prefix from HOST(v), 2) replaying the log to regenerate HOST(v)’s
partition of the provenance graph G, and 3) checking whether v exists in it. If v exists and
was derived correctly, its predecessors and successors are returned, and v is colored black;
otherwise v is colored red.

More formally, the evidence for a vertex v is an authenticator from HOST(v) that covers
a log prefix in which v existed. When MICROQUERY(v, €) is invoked on a node 4, ¢ first
outputs YELLOW(v) to indicate that v’s real color is not yet known, and then invokes
RETRIEVE(v, €) on j := HOST(v). If j returns a log prefix that matches ¢, i replays the
prefix to regenerate j’s partial provenance subgraph G, (e€)|j. This is possible because
we have assumed that the computation is deterministic. If Gy (€)|j does not contain v
or replay fails (i.e., the sent messages do not match the SEND entries in the log, a SEND
does not have a matching ACK, or the authenticators in the RECV and ACK entries do not
satisfy the conditions from Section 5.4), ¢ outputs RED(v); otherwise it outputs BLACK(v)

2In practice, SNOOPY usually does not return an entire prefix; see Section 5.6 for a list of
optimizations.

and returns the predecessors and successors of v in G, (¢). The additional evidence that
is returned for a SEND predecessor and a RECEIVE successor consists of the authenticator
from the RCV and ACK entries, respectively; the additional evidence for all other vertices
is the authenticator returned by RETRIEVE, if any.

Consistency check: As described so far, the algorithm colors a vertex v red when HOST(v)
does not have a correct ‘explanation’ (in the form of a log prefix), and it colors v yellow
if HOST(v) does not return any explanation at all. The only remaining case is the one in
which v’s explanation is inconsistent with the explanation for one of its other vertices. To
detect this, ¢ performs the following check: it determines the interval I during which v
existed during replay, and asks all nodes with which j could have communicated during
I (or simply all other nodes) to return any authenticators that were a) signed by j, and
b) have timestamps in . If such authenticators are returned, i checks whether they are
consistent with the log prefix it has retrieved earlier; if not, 4 outputs RED(v).

5.6 Optimizations

As described so far, each SNOOPY node cryptographically signs every single message and
keeps its entire log forever, and each microquery retrieves and replays an entire log prefix.
Most of the corresponding overhead can be avoided with a few simple optimizations. First,
nodes can periodically record a checkpoint of their state in the log, which must include a)
all currently extant or believed tuples and b) for each tuple, the time when it appeared.
Thus, it is sufficient for MICROQUERY(v, €) to retrieve the log segment that starts at the
last checkpoint before v appeared, and start replay from there. Note that this does not
affect correctness because, if a faulty node adds a nonexistent tuple 7 to its checkpoint,
this will be discovered when the corresponding EXIST or BELIEVE vertex is queried, since
replay will then begin before the checkpoint and end after it. If the node omits an extant
or believed tuple that affects a queried tuple, this will cause replay to fail.

Second, nodes can be required to keep only the log segment that covers the most recent
Thist hours in order to decrease storage costs. To speed up queries, the querier can
cache previously retrieved log segments, authenticators, and even previously regenerated
provenance graphs. As we show in Section 7, this reduces the overhead to a practical level.

Third, the overhead of the commitment protocol can be reduced by sending messages
in batches. This can be done using a variant of Nagle’s algorithm that was previously
used in NetReview [14]: each outgoing message is delayed by a short time Tpaten, and
then processed together with any other messages that may have been sent to the same
destination within this time window. Thus, the rate of signature generations/verifications
is limited to 1/Tpatcn per destination, regardless of the number of messages. The cost is
an increase in message latency by up to Thatch-

5.7 Correctness

Next, we argue that, given our assumptions from Section 5.2, SNOOPY provides secure
network provenance as defined in Section 4.3—that is, monotonicity, accuracy, and com-
pleteness. For lack of space, we present only informal theorems and proof sketches here;
the formal theorems and the proofs can be found in the extended version of this paper [50].

Theorem 4 SNOOPY is monotonic: if € is a set of valid authenticators and at a valid
authenticator, G, (€) is a subgraph of G, (e + ay,).

Proof sketch: There are four cases we must consider. First, the new authenticator al
can be the first authenticator from node i that the querying node has seen. In this case,
the querying node will RETRIEVE the corresponding log segment, replay it, and add the
resulting vertices to GG,. Since the graph construction is compositional, this can only

add to the graph, and the claim holds. Second, a can belong to a log segment SNOOPY
has previously retrieved; in this case, G, already contains the corresponding vertices and
remains unchanged. Third, a can correspond to an extension of an existing log segment. In
this case, the additional events are replayed and the corresponding vertices added, and the
claim follows because the graph construction is compositional and incremental. Finally,
a’s log segment can be inconsistent with an existing segment; in this case, the consistency
check will add a red SEND vertex to G,. O

Theorem 5 SNOOPY is accurate: any vertex v on a correct node that appears in G (e)
must a) also appear in G, with the same predecessors and successors, and b) be colored
black.

Proof sketch: Claim a) follows fairly directly from the fact that i := HOST(v) is correct
and will cooperate with the querier. In particular, ¢ will return the relevant segment of
its log, and since the graph construction is deterministic, the querier’s replay of this log
will faithfully reproduce a subgraph of G that contains v. Any predecessors or successors
v" of v with HOST(v') = i can be taken from this subgraph. This leaves the case where
HOST(v") # v. If v’ is a predecessor, then it must be a SEND vertex, and its existence can
be proven with the authenticator from the corresponding SND entry in A. Similarly, if v’
is a successor, then it must be a RECV vertex, and the evidence is the authenticator in the
corresponding ACK entry in A.

Now consider claim b). Like all vertices, v is initially yellow, but it must turn red or
black as soon as i := HOST(v) responds to the querier’s invocation of RETRIEVE, which
will happen eventually because i is correct. However, v can only turn red for a limited
number of reasons—e.g., because replay fails, or because i is found to have tampered with
its log—but each of these is related to some form of misbehavior and cannot have occurred
because i is correct. Thus, since v cannot turn red and cannot remain yellow, it must
eventually turn (and remain) black. O

Theorem 6 SNOOPY is complete: given sufficient evidence € from the correct nodes, a)
each vertexr in G on a correct node also appears in Gy(€), and b) when some node is
detectably faulty, recursive invocations of MICROQUERY will eventually yield a red or yellow
verter on a faulty node.

Proof sketch: Claim a) follows if we simply choose € to include the most recent authenti-
cator from each correct node, which the querying node can easily obtain. Regarding claim
b), the definition of a detectable fault implies the existence of a chain of causally related
messages such that the fault is apparent from the first message and the last message m
is received by a correct node j. We can choose v’ to be the RECV vertex that represents
m’s arrival. Since causal relationships correspond to edges in G, G, must contain a path
v’ —* v. By recursively invoking MICROQUERY on v’ and its predecessors, we retrieve a
subgraph of G, that contains this path, so the vertices on the path are queried in turn.
Now consider some vertex v” along the path. When v” is queried, we either obtain the
next vertex on the path, along with valid evidence, or v" must turn red or yellow. Thus,
either this color appears before we reach v, or we eventually obtain evidence of v. O

5.8 Limitations

By design, SNOOPY is a forensic system; it cannot actively detect faults, but rather
relies on a human operator to spot the initial symptom of an attack, which can then
be investigated using SNOOPY. Investigations are limited to the part of the system that is
being monitored by SNOOPY. We do not currently have a solution for partial deployments,
although it may be possible to use the approach adopted by NetReview [14] at the expense
of slightly weaker guarantees. SNOOPY also does not have any built-in redundancy; if the

adversary sacrifices one of his nodes and destroys all the provenance state on it, some parts
of the provenance graph may no longer be reachable via queries (though any disconnection
points will be marked yellow in the responses). This could be mitigated by replicating each
log on some other nodes, although, under our threat model, the problem cannot be avoided
entirely because we have assumed that any set of nodes—and thus any replica set we
may choose—could be compromised by the adversary. Finally, SNOOPY does not provide
negative provenance, i.e., it can only explain the existence of a tuple (or its appearance or
disappearance), but not its absence. Negative provenance is known to be a very difficult
problem that is actively being researched in the database community [28]. We expect that
SNOOPY can be enhanced to support negative provenance by incorporating recent results
from this community.

5.9 Prototype implementation

We have built a SNOOPY prototype based on components from ExSPAN [51] and Peer-
Review [17], with several modifications. We completely redesigned ExSPAN’s provenance
graph according to Section 3, added support for constraints and ‘maybe’ rules, and imple-
mented the graph recorder and the microquery module. Unlike ExSPAN, the provenance
graph is not maintained at runtime; rather, the prototype records just enough information
to reconstruct relevant parts of the graph on demand when a query is issued. This is done
using deterministic replay, but with additional instrumentation to capture provenance.
Since auditing in SNOOPY is driven by the forensic investigator, PeerReview’s witnesses
are not required, so we disabled this feature. It would not be difficult to connect the
prototype to a visualizer for provenance graphs, e.g., VisTrails [45].

Macroqueries are currently expressed in Distributed Datalog (DDlog), a distributed query
language for maintaining and querying network provenance graphs. All three methods
from Section 5.3 for extracting provenance are supported: since the prototype is internally
based on DDlog, it can directly infer provenance from any DDlog program, but it also
contains hooks for reporting provenance, as well as an API for application-specific proxies.

6. APPLICATIONS

To demonstrate that SNOOPY is practical, we have applied our prototype implementation
to three existing applications, using a different provenance extraction method each time.

6.1 Application #1: Chord

To test SNOOPY’s support for native DDlog programs, we applied it to a declarative
implementation [26] of the Chord distributed hash table that uses RapidNet [37]. There
are several known attacks against DHTs, so this seems like an attractive test case for
a forensic system. Since ExSPAN can automatically transform any DDlog program into
an equivalent one that automatically reports provenance, and since RapidNet is already
deterministic, no modifications were required to the Chord source code.

6.2 Application #2: Hadoop MapReduce

To test SNOOPY’s support for reported provenance, we applied it to Hadoop MapRe-
duce [12]. We manually instrumented Hadoop to report provenance to SNOOPY at the
level of individual key-value pairs.

Our prototype considers input files to be base tuples. The provenance of an intermediate
key-value pair consists of the arguments of the corresponding map invocation, and the
provenance of an output consists of the arguments of the corresponding reduce invocation.
The set of intermediate key-value pairs sent from a map task to a reduce task constitutes
a message that must be logged; thus, if there are m map tasks and r reduce tasks, our
prototype sends up to 2mr messages (a request and a response for each pair). To avoid
duplication of the large data files, we apply a trivial optimization: rather than copying the

files in their entirety into the log, we log their hash values, which is sufficient to authenticate
them later during replay. Since we are mainly interested in tracking the provenance of key-
value pairs, we treat inputs from the JobTracker as base tuples. It would not be difficult
to extend our prototype to the JobTracker as well.

Individual map and reduce tasks are already deterministic in Hadoop, so replay required
no special modifications. We did, however, add code to replay map and reduce tasks sepa-
rately, as well as a switch for enabling provenance reporting (recall that this is only needed
during replay). More specifically, we assign a unique identifier (UID) [19] to each of the
input, output and intermediate tuples, based on its content and execution context (which
indicates, for example, a tuple 7 is an input of map task m). The Hadoop implementation
is instrumented to automatically track cross-stage causalities. This is achieved by adding
edges between corresponding vertices when tuples are communicated across stages (e.g.
from a map output file to a reducer). For the causalities within a stage, users need to report
them using a provided API, which takes as arguments the UID of the output tuple, the
UIDs of the input tuples that contribute to the output, and the execution context. The
reported provenance information is then passed to and maintained in the graph recorder.

Altogether, we added or modified less than 100 lines of Java code in Hadoop itself, and we
added another 550 lines for the interface to SNOOPY.

6.3 Application #3: Quagga

To test SNOOPY’s support for application-specific proxies, we applied it to the Quagga
BGP daemon. BGP interdomain routing is plagued by a variety of attacks and mal-
functions [32], so a secure provenance system seems useful for diagnostics and forensics.
SNOOPY could complement secure routing protocols such as S-BGP [40]: it cannot actively
prevent routing problems from manifesting themselves, but it can investigate a wider range
of problems, including route equivocation (i.e., sending conflicting route announcements
to different neighbors), replaying of stale routes, and failure to withdraw a route, which
are not addressed by S-BGP.

Rather than instrumenting Quagga for provenance and deterministic replay, we treated it
as a ‘black box’ and implemented a small proxy that a) transparently intercepts Quagga’s
BGP messages and converts them into SNOOPY tuples, and b) converts incoming tuples
back to BGP messages. The proxy uses a small DDlog specification of only four rules.
The first rule specifies how announcements propagate between networks, and the next two
express the constraint that a network can export at most one route to each prefix at any
given time, as required by BGP. The fourth rule is a ‘maybe’ rule (Section 3.4); it stipulates
that each route must either be originated by the network itself, or extend the path of a
route that was previously advertised to it. Due to the ‘maybe’ rule, we did not need to
model the details of Quagga’s routing policy (which may be confidential); rather, the proxy
can infer the essential dependencies between routes from the incoming and outgoing BGP
messages it observes.

In addition to the four rules, we wrote 626 lines of code for the proxy. Much of this code
is generic and could be reused for other black-box applications. We did not modify any
code in Quagga.

6.4 Summary

Our three application prototypes demonstrate that SNOOPY can be applied to different
types of applications with relatively little effort. Our prototypes cover all three provenance
extraction methods described in Section 5.3. Moreover, the three applications generate
different amounts of communication, process different amounts of data, have different
scalability requirements, etc., so they enable us to evaluate SNOOPY across a range of
scenarios.

7. EVALUATION

In this section, we evaluate SNOOPY using our three applications in five different scenarios.
Since we have already proven that SNOOPY correctly provides secure network provenance,
we focus mostly on overheads and performance. Specifically, our goal is to answer the
following high-level questions: a) can SNOOPY answer useful forensic queries? b) how
much overhead does SNOOPY incur at runtime? and c) how expensive is it to ask a query?

7.1 Experimental setup

We examine SNOOPY’s performance across five application configurations: a Quagga rout-
ing daemon (version 0.99.16) deployment, two Chord installations (derived from Rapid-
Net [37] v0.3), and two Hadoop clusters (version 0.20.2).

Our Quagga experiment is modeled after the setup used for NetReview [14]. We instan-
tiated 35 unmodified Quagga daemons, each with the SNOOPY proxy from Section 6.3, on
an Intel machine running Linux 2.6. The daemons formed a topology of 10 ASes with a
mix of tier-1 and small stub ASes, and both customer/provider and peering relationships.
The internal topology was a full iBGP mesh. To ensure that both the BGP traffic and
the routing table sizes were realistic, we injected approximately 15,000 updates from a
RouteViews [39] trace. The length of the trace, and thus the duration of the experiment,
was 15 minutes. In all experiments, each node was configured with a 1,024-bit RSA key.

We evaluated the Chord prototype (Section 6.1) in two different configurations: Chord-
Small contains 50 nodes and Chord-Large contains 250 nodes. The experiments were
performed in simulation, with stabilization occurring every 50 seconds, optimized finger
fixing every 50 seconds, and keep-alive messages every 10 seconds. Each simulation ran
for 15 minutes of simulated time.

In the Hadoop-Small experiment, we ran the prototype described in Section 6.2 on
20 c1.medium instances on Amazon EC2 (in the us-east-1c region). The program we
used (WordCount) counts the number of occurrences of each word in a 1.2 GB Wikipedia
subgraph from WebBase [46]. We used 20 mappers and 10 reducers; the total runtime was
about 79 seconds. Our final experiment, Hadoop-Large, used 20 cl.medium instances
with 165 mappers, 10 reducers, and a 10.3 GB data set that consisted of the same Wikipedia
data plus the 12/2010 Newspapers crawl from WebBase [46]; the runtime for this was about
255 seconds.

Quagga, Chord, and Hadoop have different characteristics that enable us to study SNoOPY
under varying conditions. For instance, Quagga and Chord have small messages compared
to Hadoop, while Quagga has a large number of messages. In terms of rate of system
change, Quagga has the highest, with approximately 1,350 route updates per minute. In
all experiments, the actual replay during query evaluation was carried out on an Intel
2.66GHz machine running Linux with 8 GB of memory.

7.2 Example queries

To evaluate SNOOPY’s ability to perform a variety of forensic tasks as well as to measure
its query performance, we tested SNOOPY using the following provenance queries, each of
which is motivated by a problem or an attack that has been previously reported in the
literature:

Quagga-Disappear is a dynamic query that asks why an entry from a routing table
has disappeared. In our scenario, the cause is the appearance of an alternative route in
another AS j, which replaces the original route in j but, unlike the original route, is filtered
out by j’s export policy. This is modeled after a query motivated in Teixeira et al. [44];

Reduce Side (squirrel, 10,000)

[Out@Red-3]
(squirrel, 4) (squirrel, 9,993) (squirrel, 3)
[In@Red-3] [In@Red-3] [In@Red-3]
(squirrel, 4) (squirrel, 9,993) (squirrel, 3)
[Shuffled from Map-1] [Shuffled from Map-3] [Shuffled from Map-7]

************************* Intermediate MapOut -~—————-——-————-—-~""""—"""""—"————————

Map Side (squirrel, 9,993)

[CombineOut@Map-3]

e L T

(squirrel, offset;) (squirrel, offset,) (squirrel, offsets) (squirrel, offsets) (squirrel, offsetg g93)
[MapOut@Map-3] [MapOut@Map-3] [MapOut@Map-3] [MapOut@Map-3] [MapOut@Map-3]
(fileSplity, offset,) (fileSplit,, offsetg) (fileSplit,, offsetc)
[Mapin@Map-3] [Mapln@Map-3] [Mapin@Map-3]

Figure 4: Example result of the Hadoop-Squirrel macroquery (in a simplified
notation).

note that, unlike Omni, SNOOPY works even when nodes are compromised. Quagga-
BadGadget query asks for the provenance of a ‘fluttering’ route; the cause is an instance
of BadGadget [11], a type of BGP configuration problem.

Chord-Lookup is a historical query that asks which nodes and finger entries were involved
in a given DHT lookup, and Chord-Finger returns the provenance of a given finger table
entry. Together, these two queries can detect an Eclipse attack [42], in which the attacker
gains control over a large fraction of the neighbors of a correct node, and is then able to
drop or reroute messages to this node and prevent correct overlay operation.

Hadoop-Squirrel asks for the provenance of a given key-value pair in the output; for
example, if WordCount produces the (unlikely) output (squirrel,10000) to indicate that
the word ‘squirrel’” appeared 10,000 times in the input, this could be due to a faulty
or compromised mapper. Such queries are useful to investigate computation results on
outsourced Cloud databases [34].

7.3 Usability

In addition to the formal guarantees in Section 4, we also need to demonstrate that
SNoOPY is a useful forensic tool in practice. For this purpose, we executed each of the
above queries twice — once on a correct system and once on a system into which we had
injected a corresponding fault. Specifically, we created an instance of BadGadget in our
Quagga setup, we modified a Chord node to mount an Eclipse attack by always returning
its own ID in response to lookups, and we tampered with a Hadoop map worker to make
it return inaccurate results. For all queries, SNOOPY clearly identified the source of the
fault.

To illustrate this, we examine one specific example in more detail, Figure 4 shows the
output of the Hadoop-Squirrel macroquery in which one of the mappers (Map-3) was
configured to misbehave: in addition to emitting (word, offset) tuples for each word in
the text, it injected 9,991 additional (squirrel, offset) tuples (shown inred). A forensic
analyst who is suspicious of the enormous prevalence of squirrels in this dataset can use

Acknowledgments
Authenticators
Provenance

Proxy

Baseline

Total traffic (normalized to baseline)

| | .
Quagga Chord Chord Hadoop Hadoop
Small Large Small Large

Figure 5: Network traffic with SNOOPY, normalized to a baseline system with-
out provenance.

SNoOOPY to query the provenance of the (squirrel, 10000) output tuple. To answer this
query, SNOOPY selectively reconstructs the provenance subgraph of the corresponding
reduce task by issuing a series of microqueries, one for each immediate predecessor of the
(squirrel, 10000) tuple, and then assembles the results into a response to the analyst’s
macroquery. Seeing that one mapper output 9,993 squirrels while the others only reported
3 or 4, she can ‘zoom in’ further by requesting the provenance of the (squirrel, 9993)
tuple, at which point SNOOPY reconstructs the provenance subgraph of the corresponding
map task. This reveals two legitimate occurrences and lots of additional bogus tuples,
which are colored red.

Once the faulty tuples are identified, SNOOPY can be used to determine their effects on the
rest of the system, e.g., to identify other outputs that may have been affected by key-value
pairs from the corrupted map worker.

In this example, the analyst repeatedly issues queries with a small scope and inspects
the results before deciding which query to issue next. This matches the usage pattern of
provenance visualization tools, such as VisTrails [5], which allow the analyst to navigate
the provenance graph by expanding and collapsing vertices. The analyst could also use a
larger scope directly, but this would cause more subgraphs to be reconstructed, and most
of the corresponding work would be wasted because the analyst subsequently decides to
investigate a different subtree.

7.4 Network traffic at runtime

SNOOPY increases the network traffic of the primary system because messages must con-
tain an authenticator and be acknowledged by the recipient. To quantify this overhead,
we ran all five experiments in two configurations. In the baseline configuration, we ran the
original Hadoop, Quagga, or declarative Chord in RapidNet with no support for prove-
nance. In the SNOOPY-enabled prototype, we measured the additional communication
overhead that SNOOPY adds to the baseline, broken down by cause, i.e., authenticators,
acknowledgments, provenance, and proxy.

Figure 5 shows the SNOOPY results, normalized to the baseline results. The overhead
ranges between a factor of 16.1 for Quagga and 0.2% for Hadoop. The differences are
large because SNOOPY adds a fixed number of bytes for each message — 22 bytes for
a timestamp and a reference count, 156 bytes for an authenticator, and 187 bytes for

0.8

mmmmm |ndex

— Authenticators

06 = Signatures
mmmmm Messages

Per-node log growth (MB/minute)

04 I
02
0 = = i =
Quagga Chord Chord Hadoop Hadoop
Small Large Small Large

Figure 6: Per-node log growth in SNOOPY, excluding checkpoints.

an acknowledgment. Since the average message size is small for Quagga (68 bytes) and
very large for Hadoop (1.08 MB), the relative overhead for Quagga is higher, although in
absolute terms, the Quagga traffic is still low (78.2 Kbps with SNOOPY). Chord messages
are 145 bytes on average, and hence its overhead factor is in between Quagga and Hadoop.

The relative overhead of the Quagga proxy is high in part because, unlike the original
BGP implementation in Quagga, the proxy does not combine BGP announcements and
(potentially multiple) withdrawals into a single message. However, the overhead can be
reduced by enabling the message batching optimization from Section 5.6. With a window
size of Thatech= 100 ms, the number of messages decreases by more than 80%, and the
normalized overhead drops from 16.1 to 4.8, at the expense of delaying messages by up to

Tbatch .

In summary, SNOOPY adds a constant number of bytes to each message. Thus, the
absolute overhead depends on how many messages the primary system sends. The relative
increase in network traffic depends on the primary system’s average message size.

7.5 Storage

Each SNOOPY node requires some local storage for the graph recorder’s log. Since the
microquery module uses deterministic replay to partially reconstruct the provenance graph
on demand, we should generally expect the log to be at least as large as a replay log,
although SNOOPY can sometimes save space by referencing data that is already kept for
other reasons. To quantify the incremental storage cost, we ran our five experiments in
the SNOOPY configuration, and we measured the size of the resulting logs.

Figure 6 shows the average amount of log data that each node produced per minute,
excluding checkpoints. In absolute terms, the numbers are relatively low; they range from
0.066 MB/min (Chord-Small) to 0.74 MB/min (Quagga). We expect that most forensic
queries will be about fairly recent events, e.g., within one week. To store one week’s worth
of data, each node would need between 7.3 GB (Quagga) and 665 MB (Chord-Small). Note
that, in contrast to proactive detection systems like PeerReview [17], this data is merely
archived locally at each node and is only sent over the network when a query is issued.
Also, it should be possible to combine SNOOPY with state-of-the-art replay techniques
such as ODR [1], which produce very small logs.

el
8 3.5 1 = SHA-1 hash]
= 3| mmmmm RSA verify
&5 mmmm RSA sign
[OF3)
0 251
s2 ol
=n
kel
35 15}
©9
gL 1t
9]
z 05 I
0 | | e
Quagga Chord Chord Hadoop Hadoop
Small Large Small Large

Figure 7: Additional CPU load for generating and verifying signatures, and
for hashing.

The log contains copies of all received messages (for Hadoop, references to files), authen-
ticators for each sent and received message, and acknowledgments. Thus, log growth
depends both on the number of messages and their size distribution. As a result, Figure 6
shows that log growth was fastest for Quagga, given that its baseline system generates the
largest number of messages. In the case of Hadoop, our proxy benefits from the fact that
Hadoop already retains copies of the input files unless the user explicitly deletes them.
Thus, the proxy can save space by merely referencing these files from the log, and the
incremental storage cost is extremely low (less than 0.1 MB/minute). The size of the
input files was 1.2 GB for Small and 10.3 GB for Large. If these files were not retained by
Hadoop, they would have to be copied to the log.

As described in Section 5.6, SNOOPY can additionally keep checkpoints of the system
state. The size of a typical checkpoint is 25 kB for Chord and 64 MB for Quagga. Since
replay starts at checkpoint, more checkpoints result in faster queries but consume more
space. For Hadoop, the equivalent of a checkpoint is to keep the intermediate files that
are produced by the Map tasks, which requires 207 MB for Small and 682 MB for Large.

7.6 Computation

We next measured the computation cost imposed by SNOOPY. We expect the cost to be
dominated by signature generation and verification and, in the case of Hadoop, hashing
the input and output files (see Section 6.2). To verify this, we used dstat to measure
the overall CPU utilization of a Quagga node with and without the SNOOPY proxy; the
log and the checkpoints were written to a RAM disk to isolate computation from I/O
overhead. Our results show an average utilization of 5.4% of one core with SNooPY, and
0.9% without. As expected, more than 70% of the overhead can be explained by the cost
of signature generation and verification alone (in our setup, 1.3 ms and 66 us per 1,024-bit
signature); the rest is due to the proxy logic.

To get a more detailed breakdown of the crypto overhead in our three applications, we
counted the number of crypto operations in each configuration, and we multiplied the
counts with the measured cost per operation to estimate the average additional CPU load
they cause. As our results in Figure 7 show, the average additional CPU load is below
4% for all three applications. For Quagga and Chord, the increase is dominated by the
signatures, of which two are required for each message — one for the authenticator and the
other for the acknowledgment. Hadoop sends very few messages (one from each mapper

68 7 21

64 | = Auth check 1 205
— mmmm Replay
£ 60+ mmmm Download 1 20
ﬂé = Authenticators
= mmmm | ogs) —
T I mmmm Checkpoints 25 g
S 16 =
= Q
E ool -
2 15
>
4r 105
Quagga Quagga Chord Chord Hadoop
Disappear BadGadget Lookup Lookup Squirrel
(Small) (Large) (Small)

Figure 8: Query turnaround time (left bar) and data downloaded to answer
the query (right bar).

to each reducer) but handles large amounts of data, which for SNOOPY must be hashed
for commitment. Note that we do not include I/O cost for the hashed data because the
data would have been written by the unmodified Hadoop as well; SNOOPY merely adds a
SHA-1 hash operation, which can be performed on-the-fly as the data is written.

The message batching optimization from Section 5.6 can be used to reduce the CPU load.
To evaluate this, we performed an additional experiment with Quagga, and we found that
a window size of Tp,tcn= 100 ms reduced the total number of signatures by a factor of six.
Message batching also prevents the CPU load from spiking during message bursts, since
it limits the rate at which signatures are generated to at most 1/Tpatcn per destination.

7.7 Query performance

Next, we evaluate how quickly SNOOPY can answer queries, and how much data needs
to be downloaded. Since the answer depends on the query, we performed several different
queries in different systems. For each query, we measured a) how much data (log segments,
authenticators, and checkpoints) was downloaded, b) how long it took to verify the log
against the authenticators, and ¢) how much time was needed to replay the log and to
extract the relevant provenance subgraph. Figure 8 shows our results. Note that the query

turnaround time includes an estimated download time, based on an assumed download
speed of 10 Mbps.

The results show that both the query turnaround times and the amount of data downloaded
can vary considerably with the query. The Chord and Quagga-BadGadget queries were
completed in less than five seconds; the Quagga-Disappear query took 19 seconds, of which
14 were spent verifying partial checkpoints using a Merkle Hash Tree; and the Hadoop-
Squirrel query required 68 seconds, including 51 for replay. The download varied between
133 kB for Quagga-BadGadget and 20.8 MB for Hadoop-Squirrel. The numbers for Hadoop
are larger because our prototype does not create checkpoints within map or reduce tasks,
and so must replay a node’s entire task to reconstruct a vertex on that node. Fine-grained
checkpoints could be added but would require more changes to Hadoop. Generally, there is
a tradeoff between storage and query performance: finer-grained checkpoints require more
storage but reduce the size of the log segments that need to be downloaded and replayed.

800 100

©
w —
~ 80 -
3 600 F §
€ 500 | = el
e E
5 400 | 3
=)
g 300 g Or
e g
& 199 L—=— Chord (SNP) 2 Chord (SNP)
—sa— Chord (Baseline) 3]
0 | | | |) o 0 | | | |)
0 100 200 300 400 500 0 100 200 300 400 500
Number of nodes Number of nodes

Figure 9: Scalability for Chord: Total traffic (left) and log size (right)

In summary, the downloads and query turnaround times vary between queries but generally
seem low enough to be practical for interactive forensics.

7.8 Scalability

In our final experiment, we examine how SNOOPY’s overhead scales with the number of
nodes N. We ran our Chord experiment with a range of different system sizes between
N =10 and N = 500 nodes, and we measured two of the main overheads, traffic and log
size, for each N. Figure 9 shows our results, plus the baseline traffic for comparison.

The results show that both overheads increase only slowly with the system size. This is
expected because, as discussed in Sections 7.4 and 7.5, the overhead is a function of the
number and size of the messages sent. If the per-node traffic of the application did not
depend on N, the runtime overhead would not depend on N either; however, recall that
Chord’s traffic increases with O(log V), as illustrated here by the baseline traffic results,
so the SNOOPY overheads in this experiment similarly grow with O(log N).

Note the contrast to accountability systems like PeerReview [17] where the overhead itself
grows with the system size. This is because PeerReview uses witnesses to ensure that each
pair of authenticators from a given node is seen by at least one correct node. SNOOPY
relies on the querier’s node for this property (see Section 5.5) and, as a forensic system, it
does not audit proactively.

In summary, SNOOPY does not reduce the scalability of the primary system; its per-node
overheads mainly depend upon the number of messages sent.

7.9 Summary

SNoOPY’s runtime costs include a fixed-size authenticator and acknowledgment for each
message, processing power to generate and verify the corresponding signatures, and stor-
age space for a per-node log with enough information to reconstruct that node’s recent
execution. Some part of the log needs to be downloaded and replayed when a query is
issued. In the three different applications we evaluated, these costs are low enough to be
practical. We have also described several example queries that can be used to investigate
attacks previously reported in the literature, and we have demonstrated that SNOOPY can
answer them within a few seconds.

8. RELATED WORK

Debugging and forensics: The main difference between SNP and existing forensic
systems is that SNP does not require trust in any components on the compromised nodes.
For example, Backtracker [21, 22] and PASS [29] require a trusted kernel, cooperative
ReVirt [3] a trusted VMM, and A2M [7] trusted hardware. ForNet [41] and NFA [48]
assume a trusted infrastructure and collaboration across domains. Other systems, such as
the P2 debugger [43], ExSPAN [51], Magpie [2], D3S [25], QI [33], Friday [9], and Pip [38]
are designed to diagnose non-malicious faults, such as bugs or race conditions. When nodes
have been compromised by an adversary, these systems can return incorrect results.

Accountability: Systems like PeerReview [17] and NetReview [14] can automatically de-
tect when a node deviates from the algorithm it is expected to run. Unlike SNP, these
systems cannot detect problems that arise from interactions between multiple nodes, such
as BadGadget [11] in interdomain routing, or problems that are related to inputs or un-
specified aspects of the algorithm. Also, accountability systems merely report that a node
is faulty, whereas SNP also offers support for diagnosing faults and for assessing their
effects on other nodes.

Fault tolerance: An alternative approach to the problem of Byzantine faults is to mask
their effects, e.g., using techniques like PBFT [6]. Unlike SNP, these techniques require a
high degree of redundancy and a hard bound on the number of faulty nodes, typically one
third of the total. The two approaches are largely complementary and could be combined.

Proofs of misbehavior: Many systems that are designed to handle non-crash faults
internally use proofs of misbehavior, such as the signed confessions in Ngan et al. [31], a
set of conflicting tickets in SHARP [8], or the POM message in Zyzzyva [23]. In SNP, any
evidence that creates a red vertex in G, essentially constitutes a proof of misbehavior,
but SNP’s evidence is more general because it proves misbehavior with respect to the
(arbitrary) primary system, rather than with respect to SNP or its implementation, e.g.,
SNooOPY. Systems like PeerReview [17] can generate protocol-independent evidence as
well, but, unlike SNP’s evidence, PeerReview’s evidence is not diagnostic: it only shows
that a node is faulty, but not what went wrong.

Network provenance: Systems like ExSPAN [51] describe the history and derivations
of network state that results from the execution of a distributed protocol. SNP extends
network provenance to adversarial environments, and enhances the traditional notion of
network provenance by adding support for dynamic provenance and historical queries. The
support for historical queries includes some features from an earlier workshop paper [49].

Secure provenance: McDaniel et al. [27] outlines requirements for secure network
provenance, emphasizing the need for provenance to be tamper-proof and non-repudiable.
Sprov [18] implements secure chain-structured provenance for individual documents; how-
ever, it lacks essential features that are required in a distributed system, e.g., a consistency
check to ensure that nodes are processing messages in a way that is consistent with their
current state. Pedigree [36] captures provenance at the network layer in the form of per-
packet tags that store a history of all nodes and processes that manipulated the packet. It
assumes a trusted environment, and its set-based provenance is less expressive compared
to SNP’s graph-based dependency structure.

9. CONCLUSION

This paper introduces secure network provenance (SNP), a technique for securely con-
structing network provenance graphs in untrusted environments with Byzantine faults.
SNP systems can help forensic analysts by answering questions about the causes and ef-
fects of specific system states. Since faulty nodes can tell lies or suppress information, SNP

systems cannot always determine the exact provenance of a given system state, but they
can approximate it and give strong, provable guarantees on the quality of the approxima-
tion.

SNoOPY, our implementation of a SNP system, can query not only the provenance of
an extant state, but also the provenance of a past state or a state change, which should
be useful in a forensic setting. For this, it relies on a novel, SNP-enabled provenance
graph that has been augmented with additional vertex types to capture the necessary
information. To demonstrate that SNP and SNOOPY are general, we have evaluated a
SNoOOPY prototype with three different example applications: the Quagga BGP daemon,
a declarative implementation of Chord, and Hadoop MapReduce. Our results show that
the costs vary with the application but are low enough to be practical.

Acknowledgments

We thank our shepherd, Petros Maniatis, and the anonymous reviewers for their comments
and suggestions. We also thank Joe Hellerstein, Bill Marczak, Clay Shields, and Atul
Singh for helpful comments on earlier drafts of this paper. This work was supported by
NSF grants 11S-0812270, CNS-0845552, CNS-1040672, CNS-1054229, CNS-1064986, CNS-
1065130, AFOSR MURI grant FA9550-08-1-0352, and DARPA SAFER award N66001-11-
(C-4020. Any opinions, findings, and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the funding agencies.

10. REFERENCES

[1] G. Altekar and I. Stoica. ODR: Output-deterministic replay for multicore debugging.
In Proc. ACM Symposium on Operating Systems Principles (SOSP), Oct. 2009.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request
extraction and workload modelling. In Proc. USENIX Symposium on Operating
System Design and Implementation (OSDI), Dec. 2004.

[3] M. Basrai and P. M. Chen. Cooperative ReVirt: adapting message logging for
intrusion analysis. Technical Report University of Michigan CSE-TR-504-04, Nov
2004.

[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of
data provenance. In Proc. International Conference on Database Theory (ICDT),
Jan. 2001.

[5] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. VisTrails:
Visualization meets data management. In Proc. ACM SIGMOD Conference, June
2006.

[6] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398-461, 2002.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only
memory: Making adversaries stick to their word. In Proc. ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2007.

[8] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An architecture for
secure resource peering. In Proc. ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2003.

[9] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and 1. Stoica. Friday: Global
comprehension for distributed replay. In Proc. USENIX Symp. on Networked
Systems Design and Implementation (NSDI), Apr. 2007.

[10] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with

mappings and provenance. In Proc. International Conference on Very Large Data
Bases (VLDB), Sept. 2007.

(11]

[12]
(13]

(14]

(15]
(16]

(17]

(18]

(19]

20]
(21]

(22]

23]
(24]

(25]

(26]

27]

(28]

29]

(30]

(31]

T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Transactions on Networking (ToN),
10(2):232-243, Apr. 2002.

Hadoop. http://hadoop.apache.org/.

A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable virtual
machines. In Proc. USENIX Symposium on Operating System Design and
Implementation (OSDI), Oct. 2010.

A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. NetReview: Detecting
when interdomain routing goes wrong. In Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Apr. 2009.

A. Haeberlen and P. Kuznetsov. The Fault Detection Problem. In Proc. Intl.
Conference on Principles of Distributed Systems (OPODIS), Dec. 2009.

A. Haeberlen, P. Kuznetsov, and P. Druschel. The case for Byzantine fault detection.
In Proc. Workshop on Hot Topics in System Dependability (HotDep), Nov. 2006.
A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Practical accountability
for distributed systems. In Proc. ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2007.

R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure
provenance. ACM Transactions on Storage (TOS), 5(4):1-43, 20009.

R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and reduce
workflows. In Proc. Conference on Innovative Data Systems Research (CIDR), Jan.
2011.

B. Kauer. OSLO: Improving the security of Trusted Computing. In Proc. 16th
USENIX Security Symposium, Aug 2007.

S. T. King and P. M. Chen. Backtracking intrusions. ACM Transactions on
Computer Systems (TOCS), 23(1):51-76, 2005.

S. T. King, Z. M. Mao, D. Lucchetti, and P. Chen. Enriching intrusion alerts
through multi-host causality. In Proc. Annual Network and Distributed Systems
Security Symposium (NDSS), Feb. 2005.

R. Kotla, L. A. M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative
Byzantine fault tolerance. ACM Trans. on Comp. Syst. (TOCS), 27(4), Dec. 2009.
L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Trans. on Prog. Lang. and Systems (TOPLAS), 4(3):382-401, 1982.

X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek, and
7. Zhang. D3S: debugging deployed distributed systems. In Proc. USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Apr. 2008.
B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,

R. Ramakrishnan, T. Roscoe, and 1. Stoica. Declarative Networking. CACM, 2009.
P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and M. Winslett.
Towards a Secure and Efficient System for End-to-End Provenance. In Proc.
USENIX Workshop on the Theory and Practice of Provenance (TaPP), Feb. 2010.
A. Meliou, W. Gatterbauer, K. M. Moore, and D. Suciu. The complexity of causality
and responsibility for query answers and non-answers. In Proc. International
Conference on Very Large Data Bases (VLDB), Aug. 2011.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware storage systems. In Proc. USENIX Annual Technical Conference,
2006.

J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proc. Annual
Network and Distributed Systems Security Symposium (NDSS), Feb. 2005.

T.-W. Ngan, D. Wallach, and P. Druschel. Enforcing fair sharing of peer-to-peer
resources. In Proc. International Workshop on Peer-to-Peer Systems (IPTPS), Feb.
2003.

http://hadoop.apache.org/

(32]
(33]
(34]
(35]
(36]
37]

(38]

(39]
(40]
41]

(42]
(43]
(44]

[45]
(46]

(47]

(48]

(49]

(50]

[51]

O. Nordstroem and C. Dovrolis. Beware of BGP attacks. ACM Comp. Comm. Rev.
(CCR), Apr 2004.

A. J. Oliner and A. Aiken. A query language for understanding component
interactions in production systems. In Proc. International Conference on
Supercomputing (ICS), June 2010.

H. Pang and K.-L. Tan. Verifying Completeness of Relational Query Answers from
Online Servers. ACM Transactions on Information and System Security (TISSEC),
11:5:1-5:50, May 2008.

Quagga Routing Suite. http://www.quagga.net/.

A. Ramachandran, K. Bhandankar, M. Bin Tariq, and N. Feamster. Packets with
provenance. Technical Report GT-CS-08-02, Georgia Tech, 2008.

RapidNet. http://netdb.cis.upenn.edu/rapidnet/.

P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat. Pip:
Detecting the unexpected in distributed systems. In Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), May 2006.

RouteViews project. http://www.routeviews.org/.

Secure BGP. http://www.ir.bbn.com/sbgp/.

K. Shanmugasundaram, N. Memon, A. Savant, and H. Bronnimann. ForNet: A
distributed forensics network. In Proc. Intl. Workshop on Mathematical Methods,
Models and Architectures for Computer Networks Security (MMM-ACNS), Sept.
2003.

A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against the Eclipse
attack in overlay networks. In Proc. ACM SIGOPS European Workshop, Sept. 2004.
A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using queries for distributed
monitoring and forensics. In Proc. FEuroSys Conference, Apr. 2006.

R. Teixeira and J. Rexford. A measurement framework for pin-pointing routing
changes. In Proc. SIGCOMM Network Troubleshooting Workshop, Sep 2004.
Vistrails. http://www.vistrails.org/.

The Stanford WebBase Project.

http://diglib.stanford.edu/ testbed/doc2/WebBase/.

J. Widom. Trio: A system for integrated management of data, accuracy, and lineage.
In Proc. Conference on Innovative Data Systems Research (CIDR), Jan. 2005.

Y. Xie, V. Sekar, M. Reiter, and H. Zhang. Forensic analysis for epidemic attacks in
federated networks. In Proc. IEEE International Conference on Network Protocols
(ICNP), Nov. 2006.

W. Zhou, L. Ding, A. Haeberlen, Z. Ives, and B. T. Loo. TAP: Time-aware
provenance for distributed systems. In Proc. USENIX Workshop on the Theory and
Practice of Provenance (TaPP), June 2011.

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. Technical Report MS-CIS-11-14, University of Pennsylvania,
2011. Available at http://snp.cis.upenn.edu/.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and
maintenance of network provenance at Internet-scale. In Proc. ACM SIGMOD
Conference, June 2010.

http://www.quagga.net/
http://netdb.cis.upenn.edu/rapidnet/
http://www.routeviews.org/
http://www.ir.bbn.com/sbgp/
http://www.vistrails.org/
http://diglib.stanford.edu/~testbed/doc2/WebBase/
http://snp.cis.upenn.edu/

	Introduction
	Overview
	Threat model
	Approach
	Provenance and confidentiality
	Strawman solutions

	Provenance Graph
	System model
	Vertices and edges
	Example: Minimum cost routing
	Constraints and `maybe' rules
	Graph construction

	Secure Network Provenance
	Using evidence to approximate G
	Limitations
	Definition: SNP
	Discussion

	The SNooPy System
	Architecture
	Assumptions and requirements
	Extracting provenance
	Graph recorder
	Microquery module
	Optimizations
	Correctness
	Limitations
	Prototype implementation

	Applications
	Application #1: Chord
	Application #2: Hadoop MapReduce
	Application #3: Quagga
	Summary

	Evaluation
	Experimental setup
	Example queries
	Usability
	Network traffic at runtime
	Storage
	Computation
	Query performance
	Scalability
	Summary

	Related Work
	Conclusion
	References

