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ABSTRACT
Implementation-level software model checking explores the state space of a system implementation
directly to find potential software defects without requiring any specification or modeling. Despite
early successes, the effectiveness of this approach remains severely constrained due to poor scalability
caused by state-space explosion. DEMETER makes software model checking more practical with
the following contributions: (i) proposing dynamic interface reduction, a new state-space reduction
technique, (ii) introducing a framework that enables dynamic interface reduction in an existing model
checker with a reasonable amount of effort, and (iii) providing the framework with a distributed
runtime engine that supports parallel distributed model checking.

We have integrated DEMETER into two existing model checkers, MACEMC and MODIST, each
involving changes of around 1,000 lines of code. Compared to the original MACEMC and MODIST

model checkers, our experiments have shown state-space reduction from a factor of five to up to five
orders of magnitude in representative distributed applications such as PAXOS, Berkeley DB, CHORD,
and PASTRY. As a result, when applied to a deployed PAXOS implementation, which has been
running in production data centers for years to manage tens of thousands of machines, DEMETER

manages to explore completely a logically meaningful state space that covers both phases of the
PAXOS protocol, offering higher assurance of software reliability that was not possible before.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—Model checking, Reliability; D.2.5
[Software Engineering]: Testing and Debugging—Testing tools

General Terms
Algorithms, Reliability
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1. INTRODUCTION
Reliability has become an increasingly important attribute for computer systems, as we are witnessing
growing dependencies on computer systems that run continuously on commodity hardware despite
adversity in the environment. Complete verification of system implementations has been a daunting
job, if not infeasible for complex real-world systems. Implementation-level software model check-
ing [18, 36, 32, 41, 40, 33, 29, 38, 39] proves to be a viable approach for improving reliability. It
has advanced to a stage where it can be applied directly to a system implementation and can find rare
program bugs by exploring a system’s state space systematically to detect system misbehavior such
as crashes, exceptions, and assertion failures. Despite this success, these model checkers are often
unable to explore completely any non-trivial logically bounded state space (e.g., a normal single ex-
ecution of consensus), making it hard to provide any degree of assurance for reliability. State-space
explosion is a major obstacle to their effectiveness.

In this paper, we introduce dynamic interface reduction (DIR), a new state-space reduction technique
for software model checking. DIR is based on two principles.

First, check components separately. A common practice to manage software complexity is to en-
capsulate the complexity using well-defined interfaces. Leveraging this common practice, a model
checker considers a target software system as consisting of a set of components, each with a well-
defined interface to the rest of the system. For example, a typical distributed system is comprised
of a set of processes interacting with each other through message exchanges. The set of message-
exchange sequences, or message traces, between a component and the rest of the system defines the
interface behavior for that component. In general, all behavior such as shared memory, failure corre-
lations, or other implicit channels that cause one component to affect another is captured by interface
behavior. Any behavior other than interface behavior is locally contained. Given the interface be-
havior of each component, DIR can check its local state-space separately, avoiding unnecessary (and
expensive) exploration of the global state-space when possible.

Second, discover interface behavior dynamically. Model checking each component separately re-
quires knowing the interface behavior of the component. DIR discovers this behavior dynamically
during its state-space exploration, by running the target components for real and combining their dis-
covered interface behavior. This process is often efficient because it ignores intra-component com-
plexity that does not propagate through interfaces. Moreover, this process is completely automated,
so that developers do not have to specify interface behavior manually [22, 31], which may be tedious,
error-prone, and inaccurate. A last benefit is that this process discovers only the true interface be-
havior that may actually occur in practice, not made-up ones [23], thus avoiding difficult-to-diagnose
false positives.

We incorporate the DIR technique into DEMETER, a model checking framework that includes an
algorithm that progressively explores the local state-space of each component, while discovering in-
terface behavior between components. DEMETER adopts a modular design as a framework to enable
DIR in existing model checkers with a reasonably small amount of engineering effort. Its design can
reuse the key modules for modeling a system and for state-space exploration in an existing model
checker; DEMETER further defines a set of common data structures and APIs to encapsulate the im-
plementation details of an existing model checker. The key DIR algorithm can then be implemented
independently of any specific model checker and is accordingly reusable.

DEMETER implements a distributed runtime for DIR-enabled model checking that leverages the
inherent parallelism of DIR, as local explorations for components with respect to given interface
behavior are largely independent. As a result, DEMETER scales nicely when running on more ma-
chines, and is capable of tapping into any distributed system or cloud infrastructure that is becoming



prevalent today to push model checking capabilities further.

To demonstrate the practicality of DEMETER, we have incorporated DIR into MACEMC and MODIST,
two independently developed model checkers. Despite their fundamental differences in implementing
model checking, each requires changes of only around 1,000 lines of code, thanks to the framework
provided by DEMETER. The resulting model checkers take advantage of not only the new reduc-
tion technique, but also of the distributed runtime to run model checking in parallel on a cluster of
machines.

The resulting checkers have been used to check representative applications, ranging from PASTRY

and CHORD, two classic peer-to-peer protocols, to Berkeley DB (BDB), a widely used open source
database, and to MPS, a deployed PAXOS implementation that has been running in production data
centers for years to manage tens of thousands of machines. Our experiments show up to a 105

speedup in estimated state-space exploration, thanks to the effectiveness of interfaces in hiding local
non-determinism related to thread interleaving and coordination. Furthermore, DEMETER’s runtime
shows nearly perfect scalability as we increase worker machines from 4 to 32. This significantly im-
proved model-checking capability from both state-space reduction and parallelism translates directly
to increased confidence in the reliability of systems that survive extensive checking: in our experi-
ment with MPS, DEMETER was able to explore a complete sub-space, where three servers execute
both phases in the PAXOS protocol. DEMETER was also able to explore a complete sub-space for
CHORD on MACE with three servers until all have joined. To the best of our knowledge, neither
would be possible for any published implementation-level model checker without DIR.

The rest of the paper is organized as follows. Section 2 presents an overview with an example
system we use throughout the paper. Section 3 presents an overview of DIR and the algorithm. Sec-
tion 4 outlines DEMETER’s system architecture and how MACEMC and MODIST are integrated with
DEMETER. Evaluations of and experiences with DEMETER are the subject of Section 5, followed
by discussions in Section 6. We survey related work in Section 7 and conclude in Section 8.

2. OVERVIEW AND AN EXAMPLE
Dynamic interface reduction in DEMETER considers a system consisting of a set of components, each
with a well-defined interface to interact with the rest of the system. For example, a distributed system
can have processes running on each machine as a component, with a sequence of message exchanges
between components forming a message trace as interface behavior. (We assume no interactions
occur via any means other than messages.) State-space exploration is then divided into a set of
local explorations, one for each component, and a global exploration that explores the interactions
between components; e.g., in the form of message traces. During the exploration, DEMETER tracks
and builds up the interface behavior (e.g., message traces) between each component and the rest of
the system. By dynamically discovering interface behavior, DEMETER removes the need for users
to model interactions beforehand through manual or static-analysis methods, and follows closely the
philosophy of implementation-level software model checking with no specification or modeling.

Before presenting the details of the system model, the DIR algorithm, the architecture, and the imple-
mentation of DEMETER, in this section, we use a simple code example to describe at a high level the
work flow of DEMETER with DIR and what kind of reduction it can achieve. For simplicity, we focus
on distributed systems where an execution trace captures the non-deterministic events such as thread
interleaving, message send, and message receive operations in an execution, while a message trace,
which includes only the message send and receive operations in an execution, captures the interface
behavior across components.

2.1 An Example
Figure 1 shows the pseudo code of a contrived distributed accumulator composed of three compo-
nents: a client, a primary server, and a secondary server. The client (left of Figure 1) calls function
Choose(2) [18, 39, 40, 29], which non-deterministically returns 0 or 1. In practice, this can be



 
 
Client                                    Primary/Secondary 
                                   //Main thread            //Checkpoint thread        
if (Choose(2)==0){     while (n=Recv()) {        Lock(); 
    Send(P,1);                    Lock();                      Log(sum);    Ckpt 
    Send(P,2);                    sum+=n;       Sum     Unlock(); 
} else {                             Unlock();                   
    Send(P,1);                  if (isPrimary)       
    Send(P,3);                         Send(S,n);  
}                                }      
                                

Figure 1: Code example for a contrived distributed accumulator composed of a client C, a
primary server P, and a secondary server S.

used to imitate the effect of timeout, failure, or a random function. Depending on the returned value
of the Choose function, the client code sends two different sequences of numbers to the primary,
which then sums them up and forwards them to the secondary. A checkpoint thread writes the sum
to disk. We label the critical sections in these two threads as Sum and Ckpt, respectively. Both
the primary and the secondary run the same code (right of Figure 1), except that the secondary has
isPrimary set to false. As a result, the secondary receives the numbers from the primary, but does
not forward the numbers further.

Our example does only simple summation for clarity. However, it still mimics real distributed systems
in many aspects. For instance, it is built on top of common techniques that real distributed systems
use, such as replication, message passing, multi-threading, and checkpointing. Moreover, it has
a well-defined component interface that hides the implementation details (e.g., when the checkpoint
thread of the server interleaves with the main thread) within a component. Because these local choices
do not propagate outside of component interfaces, we can check them locally without resorting to
expensive global exploration of all components.

2.2 DIR Work Flow
At a high level, the work flow of DEMETER with DIR alternates between a global explorer enumer-
ating the global message traces across components and a set of local explorers, one per component,
enumerating the local execution traces within each component. Figure 2 illustrates this work flow
using the example in Figure 1. The DIR work flow has five key steps:

1. To bootstrap the checking process, the global explorer first performs a global execution including
all components to discover an initial global execution trace, and the corresponding global message
trace that keeps only the message send and receive operations. As shown in the figure, the global
explorer first explores the choice of Choose(2) returning 0 in the client. The client then sends
the sequence 1 and 2 to the primary, which forwards it to the secondary, resulting in the global
trace Trace1. A corresponding global message trace can be obtained by removing all intra-
component events from Trace1. The goal of the global explorer is to discover all global message
traces.

2. The global explorer projects a newly discovered global message trace down to each component’s
local message trace by keeping only the message exchanges that are either sent or received by
that component. It then sends to each component the corresponding projected message trace.
Step 3 in Figure 2 shows the results of this projection for each component. As the global explorer
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Figure 2: Work flow of DEMETER with DIR on the example in Figure 1. The work flow has
five key steps, as explained in §2.2.

discovers more and more global message traces, it keeps generating such projections, increasingly
capturing the interface behavior of each component.

3. Checking now shifts to local explorers. A local explorer enumerates non-deterministic choices
within the corresponding component. Because the local explorer does not control the execution
of other components, whenever the component attempts to interact with other components, the
local explorer will match any outgoing messages with those in the local message trace and replay
any incoming messages according to the local message trace. As shown in step 3 of Figure 2, the
local explorer for the primary (similarly for the secondary) explores the different interleavings of
the Sum and Ckpt operations while matching the Send operations and replaying the Recv.

4. If a local explorer causes the component to send a new message that deviates from the local
message trace, it can no longer follow the message traces it already knows, and has to report this
deviation to the global explorer. For instance, as shown in Figure 2, when the local explorer of
the client explores the choice of Choose(2) returning 1, it encounters a new interface operation
Send(P,3) (boxed) deviating from the known message traces of the client. We label the new
trace Trace2.

5. The global explorer then composes the new message trace with existing global message traces to
construct new global message traces. For instance, in Figure 2, the global explorer locates the
deviating points in the global message trace derived from Trace1 and stitches the unchanged
portion together with Trace2 to form a new global message trace. (For details of this composi-
tion process, see Section 3.3.) Then, the global explorer goes back to step 2 and repeats until no
new message trace is discovered and all the local explorations against the known message traces
have finished.

2.3 Reduction Analysis
For the example in Figure 1, each component has two different message traces (one for each value
returned by Choose(2) at the client). The client has one local execution trace per message trace.
The primary and the secondary each have three different local traces per message trace, because Sum



and Ckpt can interleave differently and lead to different local states (see Figure 2), but the changed
local state does not propagate across the component interfaces. Thus, DEMETER with DIR explores
2∗ (1+3+3) = 14 different executions.

In contrast, a model checker without DIR has to re-explore the entire system whenever the local state
of a component changes. The reason is that, without dividing a whole system into components and
monitoring the interface behavior, a model checker has to assume that a local change may affect the
rest of the system. Thus, it must re-explore all non-deterministic choices in the rest of the system
under this local change. For instance, when the primary’s main thread interleaves differently with
its checkpoint thread and results in a different local state, a model checker without DIR would have
to re-explore unnecessarily the choices in both the client and the secondary. As a result, it would
explore a total of 2∗3∗3 = 18 executions.

Analytically, DIR achieves exponential state-space reduction. To illustrate, consider a modified ex-
ample where the client sends one sequence of n numbers and the primary forwards the numbers to
(m− 1) replicas. Each server (primary or replica) has exactly one message trace (since the client
sends only one sequence of numbers). Under this message trace, each server has (n+ 1) different
thread interleavings. Therefore, DEMETER would explore 1+m ∗ (n+ 1) executions, whereas a
model checker without DIR would explore (n+1)m executions.

From a system perspective, the reduction of DIR can be intuitively viewed as a result of caching.
Consider a system where a component has many local non-deterministic choices but always sends
the same message to the other components. When exploring this component, the first time we dis-
cover an outgoing message, we have to explore the effects of this message on the other components,
which can be expensive. However, as we keep exploring this component, we discover that it sends the
same message again in a different execution, and we can thus safely skip the expensive exploration
of the other components under this same message. In other words, we effectively get a “cache hit.”
Following this intuition, we expect DIR to work well for any system where there are well-defined
interfaces to hide implementation details. This is common for practically all real systems, especially
loosely coupled distributed systems that are designed to reduce the amount of inter-process commu-
nication for performance reasons.

3. DYNAMIC INTERFACE REDUCTION
In this section, we present the system model we assume for DIR and the detailed algorithm.

3.1 System Model
DEMETER checks standard concurrent/distributed systems as defined previously in software model
checking [16, 18]. Abstractly, a system starts from an initial state and at each step performs a tran-
sition into the next state. A transition is enabled if it is not blocked and can be scheduled to execute
on the current state. The environment is used to model the non-determinism as different choices of
enabled transitions at a state. Such non-determinism includes thread/process scheduling, message
ordering, timers, failures, and other randomness in the system.

Implementation-level software model checkers work directly on actual implementations of target
systems. They typically consist of two major pieces. The first is a system wrapper that exposes an
underlying system and enables the control of non-determinism in the environment. The second is an
exploration mechanism that builds on top of the system wrapper to explore the system state space
by capturing and controlling non-determinism in order to find software defects such as unintended
exceptions and crashes, assertion failures, and other safety violations.

In DEMETER, a system is divided into a static set C of components. Components interact with
each other through interface objects, such as communication channels or shared objects. We classify
transitions as internal transitions if they do not read or write interface objects, or interface transitions
if they access and/or update interface objects. An interface transition is further an output transition
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Figure 3: A trace τ of the example code in Figure 1. main and cp refer to the main and the
checkpoint threads, respectively.

if it updates an interface object (e.g., sending a message or updating a shared object); or an input
transition if it reads an interface object (e.g., receiving a message or reading a shared object).

Two transitions are dependent if their executions interfere with each other: one could enable/disable
the other, or executing them in a different order could change the final outcome. Examples are two
lock operations on the same lock, a write operation and read/write operations on the same shared
variable, and a message send operation and the corresponding receive are dependent. Starting from
an initial state, a system execution is modeled as a trace that captures all transitions taken by the
system and the partial order (�) between those transitions based on transition dependencies. Partial-
order equivalent traces are considered the same. Given a trace τ and an enabled transition t at the
state after executing τ , we can extend τ to a new trace τ ◦ t by carrying out transition t. We can
further define a prefix relation between traces as follows. A trace τp is a prefix of τ if and only if any
transition in τp is in τ and, for any transition t in τp and any tp � t in τ , tp must be in τp and tp � t in
τp holds.

Each transition belongs to a particular component. A global trace τ can be projected onto a compo-
nent C to obtain a local trace by preserving only transitions that belong to component C (including
output transitions from C to other components) and output transitions from other components to C,
along with their partial order. The result is referred to as localc(τ). To capture interface behavior
in a trace, we construct a global skeleton from a global trace τ by keeping only interface transitions
and their partial order in the trace. We refer to the resulting skeleton as skel(τ). Similarly, a local
skeleton skel(localc(τ)) can be defined on local trace localc(τ) for component c. A local skeleton
captures the interface behavior between c and the rest of the system. Two global traces τ and τ ′ are
interface-equivalent with respect to component c if and only if their local skeletons on c are the same;
that is, skel(localc(τ)) = skel(localc(τ ′)) holds.

Figure 3 shows an example trace τ of the example code in Figure 1. Each segment corresponds
to a transition, while arrows represent inter-thread/process communications, which also imply the
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Figure 4: Composition by Substitution: an Example.

happen-before relation between transitions. A partial order (�) is defined between transitions in
the same thread, between a send transition and its corresponding receive transition across threads
and processes, and is transitive. Examples include P.Recv(C,1) � P.Sum, P.Sum � P.Ckpt,
P.Send(S,1) � S.Recv(P,1). All Send and Recv transitions (marked in bold) are inter-
face transitions, while Choose, Sum, and Ckpt are internal transitions corresponding to local non-
deterministic choices. The corresponding global skeleton of τ in Figure 3 contains the 6 interface
transitions and their partial order as in the original trace. The local trace with a projection to the
client contains Choose(2)=0, C.Send(P,1), and C.Send(P,2). The corresponding local
skeleton contains only transitions C.Send(P,1) and C.Send(P,2).

3.2 Partial-Replay Local System
The first core idea of DIR is to check each component separately. Checking a component c is possi-
ble with a local skeleton that specifies all the interface behavior between c and the rest of the system.
This is done through a partial-replay local system. In theory, it is possible to replay just the interface
transitions on a local skeleton (e.g., by supplying received messages recorded in the local skele-
ton). In reality, replaying only the interface transitions is difficult. For example, in order to replay
message-exchange transitions, the underlying network channels (sockets) must be set up correctly.
This could involve earlier operations such as bind. Such internal dependencies might be hard to iden-
tify thoroughly; the process is often error-prone. Simulating network behavior for replaying is also
a significant undertaking, as done in model checkers such as MODIST. Therefore, a partial-replay
local system replays not only interface transitions, but also any other transitions in the rest of the
system. This choice leads to a simple and modular design, albeit at the cost of running transitions in
other components.

More precisely, given a local skeleton κc and a representative trace τ satisfying localc(skel(τ)) = κc,
a partial-replay local system tries to enumerate transitions in c, while replaying the behavior of the
rest of the system (denoted as R) according to τ . Starting from the initial state, in each step the partial-
replay local system either picks an enabled transition from component c or replays τ’s transitions in
R. A transition t made by R in localR(τ) can be replayed if and only if any transition in localR(τ)
that t depends on has already been replayed.

A partial-replay local system could make an output transition in c that deviates from κc. Such a
deviating output transition is called a branching transition. When a branching transition tb is encoun-
tered, let τb be the trace explored right before taking the branching transition, the partial-replay local
system reports 〈tb,τb〉 in order for DEMETER to discover new global and local skeletons through
composition by substitution, which we describe next.

3.3 Composition by Substitution



The second core idea of DIR is to discover interface behavior dynamically. This is the responsibility
of the global explorer through composition by substitution. The global explorer maintains the set
G containing the pair 〈κ,τ〉 for each discovered global skeleton κ and a corresponding global trace
τ , where κ = skel(τ). The global explorer further maintains a set B of all discovered branching
transition/trace pairs (〈tb,τb〉) reported by partial-replay local systems.

Intuitively, the global explorer’s process of discovering interface behavior can be thought of as a
state-space exploration of a new transition system with only the interface transitions of the original
system. The global explorer essentially builds up the transition system with the global skeletons
captured in G, where the branching transitions captured in B are the transitions in that system. For
a branching transition from component c, the local skeleton κc = localc(skel(τb)) defines when that
branching transition is enabled: for any global skeleton κ , the branching transition is enabled if and
only if localc(κ) = κc holds, in which case we can carry out that branching transition to extend κ to
a new global skeleton.

This process is described more precisely through the following composition by substitution on traces,
which uses the subst operation defined as follows. If two traces τ and τ ′ are interface-equivalent with
respect to component c, τs = substc(τ,τ ′) defines a new trace by replacing all c’s transitions in τ with
c’s transitions in τ ′ while preserving the partial order in the original traces; that is, for any transitions
t and t ′ in τn, if t and t ′ are both in τ or both in τ ′ with t � t ′, then t � t ′ holds in τs. Such a substitution
is possible because τ and τ ′ are interface-equivalent with respect to c: c’s transitions in τ and τ ′ are
indistinguishable to the rest of the system because they present the same interface behavior (i.e., local
skeleton).

Given 〈tb,τb〉 ∈ B and 〈κg,τg〉 ∈ G, where τb and τg are interface-equivalent with respect to compo-
nent c, we compose a new global trace τs = substc(τg,τb) through substitution, construct τn = τs ◦ tb
by taking the branching transition tb, and add 〈skel(τn),τn〉 into G.

Figure 4 illustrates the process of composition by substitution. We enrich the example in Figure 1
slightly by enabling the primary to resend its message if a local timeout for that message is triggered.
The secondary ignores the resent message if it has already received the previous one. The extension
creates more variations in global skeletons and helps illustrate how composition by substitution cre-
ates new global skeletons. Figure 4(a) shows a global trace τA (containing all transitions in solid lines)
with a branching transition tb = C.Send(P, 3) (in dotted lines), when the client has Choose(2)
set to 1, rather than 0. Figure 4(b) shows another global trace τB that has the same local skeleton for
the client as τA. It is a prefix of a complete trace when the client has Choose(2) set to 0. The local
traces of τA and τB for the primary are different in the order between Sum and Ckpt. The global
skeletons of the two are also different: in τB, the primary resends the message with value 1. The
differences in τA and τB are however invisible to the client. Further assume that τB and its global
skeleton have already been discovered in G. When the branching transition in Figure 4(a) is reported,
a composition is performed to yield a new trace substC(τB,τA), where the branching transition is also
enabled, as shown in Figure 4(c). substC(τB,τA)◦ tb is then a new global trace.

3.4 Global and Local Explorers
The DIR algorithm consists of two types of cooperative progressive tasks that are running concur-
rently. Whereas the global explorer maintains a set G to track global skeletons and a set B to track
branching transitions, a local explorer for component c maintains Lc = {〈localc(κ),τ〉 | 〈κ,τ〉 ∈ G}
to track local skeletons for component c. Figure 5 illustrates the interactions between the global
explorer and the local explorers. Local explorers use partial-replay local systems to explore each
component separately and reports branching to the global explorer, while the global explorer uses
composition by substitution to discover new global skeletons.

Local Explorer
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Global Explorer

1. Perform composition by substitution whenever B or G is updated until reaching a fixed point. For
any 〈κg,τg〉 ∈ G, and 〈tb,τb〉 ∈ B satisfying skel(localc(τb)) = localc(κg), where tb is a transition
from component c, let τn = substc(τg,τb)◦ tb, add 〈skel(τn),τn〉 into G.

2. For each component c, update Lc = {〈localc(κ),τ〉 | 〈κ,τ〉 ∈ G} whenever G is updated.

Optimizations. It is worth noting that our presentation of the algorithm ignores certain obvious
optimizations for simplicity and clarity. For example, any prefix of a global skeleton/trace can be
subsumed because any prefix of a valid global skeleton/trace is a valid global skeleton/trace. We
just need to record the longest ones. Also, to avoid an excessive number of branching transitions,
when a new global skeleton is constructed, the global explorer will attempt to continue running the
corresponding global trace to completion, including all system components. Similarly, the algorithm
starts by having the global explorer perform a global execution including all system components to
discover initial global traces, in order to initialize G with some global skeletons and associated global
traces.

Correctness. A state-space reduction technique must be both sound and complete. In the context
of DIR, soundness requires that every local trace explored by the algorithm is a projection of a valid
global trace, while completeness states that, for any valid global trace τ , our algorithm discovers
skel(τ) in the global explorer (G) and finds localc(τ) in the local explorer for every component c.

Intuitively, the soundness hinges on the following fundamental substitution rule: if two valid traces
τ and τ ′ are interface-equivalent with respect to component c, substc(τ,τ ′) is also a valid trace. The
substitution rule derives directly from the notion of interface equivalence and reflects the following
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observation. A component’s interface behavior, captured by its local skeletons, isolates a component
from the rest of the system. For an execution of a single component, changes in the rest of the system
are irrelevant as long as the behavior at the interface (as captured in local skeletons) remains the
same. Conversely, if two executions of a component conform to the same local skeleton, they are
indistinguishable from the rest of the system.

DIR upholds soundness because, during both the partial-replay local exploration and the composition
in global exploration, each discovered local or global skeleton complies with a valid global trace due
to the substitution rule. The completeness is guaranteed through the cooperation of local and global
explorers, as the local exploration can find all the local states and discover all the possible branching
transitions with respect to given local skeletons, while the global explorer can construct all new global
skeletons through composition for given sets of global skeletons and branching transitions. A proof
sketch for the soundness and completeness is described in Appendix A.

4. ARCHITECTURE AND IMPLEMENTATION
In this section, we present the layered architecture of DEMETER that is specifically designed to facil-
itate incorporation of DIR into an existing model checker, followed by notes on some implementation
details and on how we retrofit MACEMC and MODIST to integrate DEMETER.

4.1 A Model Checking Framework
We design DEMETER as a model-checking framework, which can embed an existing software model-
checker in order to enable DIR for it. We refer to the model checker embedded in DEMETER as eMC.
This design significantly reduces the amount of work to build model checkers with DEMETER and
avoids having DIR trapped in a particular model checking implementation.

Turning DEMETER into a model-checking framework requires a careful modular design. Figure 6
shows the layered architecture of DEMETER, where the shaded rectangles correspond to the layering
in eMC. These modules (system wrapper and state-space explorer) are unmodified when plugged
into DEMETER. In particular, DEMETER is able to leverage eMC’s state-space explorer because it
adds a partial-replay local system layer that gives the state-space explorer an illusion of a stand-alone
complete system, similar to the original application. The partial-replay local system layer further
uses a component wrapper, which defines component boundaries and interface transitions. To isolate
the specific implementation details of eMC, DEMETER defines a common set of eMC-neutral data
structures/API and implements a Common Data Structure Layer that converts between these common
data structures and those used in a particular eMC. Consequently, the global explorer and the part



of the local explorer built on top of the Common Data Structure Layer are reusable across different
eMCs.

Partial-Replay Local System. As shown in Figure 6, DEMETER builds a partial-replay local system
by reusing eMC’s state-space explorer and system wrapper. The partial-replay local system takes a
component c, a local skeleton, and a corresponding global trace τ , and runs the entire system on the
original system wrapper except that it checks whether a transition is local to c or not (provided by
the component wrapper) and replays any transitions in the rest of the system R following τ . The
replay of R’s transitions in τ is done by instructing eMC’s state-space explorer to take the designated
transitions, but all the choices within component c are left to eMC’s state-space explorer.

Common data structures and APIs. Conceptually, the global explorer can be regarded as perform-
ing model checking of components with only interface transitions. However, reusing either eMC’s
system wrapper or state-space explorer is difficult partly because this higher-level system must be
constructed with transitions not known beforehand.

We opt for simplicity and build the global explorer on a small set of common data structures and
APIs. In particular, we model the basic concurrency unit of a system as a thread. A transition is
represented by a simple data structure with the following core fields: (i) its thread identifier, (ii) its
unique identifier, (iii) its vector clock, (iv) interface transition flag, and (v) additional information
about the transition. The additional information is mainly for converting this data structure to any
original trace representation in eMC. A trace is defined as a set of transitions organized by their
partial order (according to vector clocks). A skeleton is defined as a kind of trace that contains only
interface transitions. Common operations can be defined on those data structures, such as projection
from global trace to local trace, extraction of interface skeleton from a trace, and composition of a
branching trace and a global trace. All of these operations are independent from eMC.

We have further implemented the following core functions on top of eMC’s system wrapper for
global explorer: (i) reset system to the initial state, (ii) execute a particular transition at the current
trace prefix, and (iii) run a trace prefix to completion (after the prefix, any completion of a global
trace is sufficient). For local explorer, the partial-replay local system also provides a simple API to
set up and run a partial replay. Implementing the global explorer and part of the local explorer on this
set of common data structures and APIs makes its core logic reusable as it is made independent from
eMC. The common data structure layer in Figure 6 is responsible for providing the data-structures
and the APIs.

4.2 Interface Equivalence and Vector Clock
Interface equivalence defined on the equality of two skeletons is a key concept in DEMETER and is
widely used in the implementation of DIR. For example, the local explorer needs to check equality
between branching traces and local skeletons so that it can decide whether an encountered branching
trace or local skeleton is new or not; when performing composition, the global explorer also needs to
check whether two traces are interface-equivalent.

Interface equivalence can be judged by comparing interface transitions in skeletons. An interface
transition in a skeleton is identified through the following four properties: (i) the component it belongs
to, (ii) the communication object it accesses, (iii) its operation and arguments (e.g., a send operation
with its message content), and (iv) partial order information which can be expressed in vector clocks
that capture the happen-before relation between transitions.

Special care must be taken when vector clocks are used for interface-equivalence checking. Using
vector clocks on traces directly might be problematic because the vector clocks also take into account
internal transitions that are not included in skeletons. DEMETER therefore recomputes a skeleton
vector clock for each trace. It first extracts the interface transitions and their dependencies from the
original trace to build a dependency graph of the interface transitions. Based on the dependency



graph, DEMETER re-computes the vector clock for the skeleton.

To expedite frequently-used interface-equivalence checking, DEMETER first imposes the same canon-
ical representation on partial-order equivalent skeletons and computes a signature for a skeleton by
applying a hash on that canonical representation. The equality of two skeletons is then the same as
the equality of their signatures.

4.3 Distributed Runtime
The architecture of DEMETER enables a fair degree of parallelism. Model checking in DEMETER

involves a global explorer and a set of local explorers, one for each component. Each local explorer
is responsible for one component of the model-checked system and has no direct interactions with
others. For each local skeleton of the component, the local explorer starts an MC Worker that executes
the partial-replay local system for that component with respect to that local skeleton.

In our current implementation, the global explorer is the only major centralized task in the whole
execution flow of DEMETER. Its core task, composition by substitution, is independent for each
matching pair from G and B and can be executed separately, with its complexity linear to the length of
the input traces. The complexity of finding matching pairs in G and B is in the worst case quadratic to
the number of elements in the sets, although better data structures can be used to speed up the process
of finding matching pairs. The size of G could grow exponentially with the number of components. In
our experiments, we have not observed the global explorer becoming a bottleneck for the scalability of
the entire exploration of DEMETER (see Section 5.2), largely because there are only a small number
of components. We do not focus on cases where there are a large number of components because, as
will be discussed in Section 6.1, it is possible to keep the number of components (at each level) small
by organizing a system into a hierarchy of components.

All state changes on the global explorer are logged and persisted so that it can be re-started after
failures. No replication is enabled, although doing so is straightforward. Because the global explorer
always checks whether a reported branching trace is new, having duplicate branching traces sent to
the global explorer is acceptable. As a result, any MC Worker can be re-started without causing any
correctness problem. In the worst case, an MC Worker can be re-started (possibly on a different
machine) and the previously explored local state space would be re-explored. Because it uses an
existing model checker for local exploration, its ability to re-start from failure is determined by that
underlying model checker. Ideally, each MC Worker leverages a checkpoint/recovery mechanism in
the underlying model checker to avoid redundant exploration due to failures.

4.4 Integration with Existing Model Checkers
CompWrap DEMETER is designed to integrate with existing model checkers, and we have enabled
DIR for MACEMC and MODIST using DEMETER. Table 1 shows line-number counts for the com-
mon parts of DEMETER, as well as those specifically for MACEMC and MODIST. The common
DEMETER modules include the following: the global explorer, part of the local explorer that is
responsible for coordinating with partial-replay local systems and with the global explorer, the com-
mon data structure and API, and other utilities, such as the network library, cross-OS utilities, and
message-digest modules. For MACEMC and MODIST individually, we need to implement a partial-
replay local system (PRLocal), a component wrapper (CompWrap), and a converter for the Common
Data Structure Layer. The converters are simple in both: they take less than 100 lines of code and are
integrated with other pieces.

MACEMC Integration. MACEMC is a software model checker for systems implemented using the
MACE compiler and C++ language extensions. MACE models each node as a state machine with
atomic event handlers for events such as message reception and timeouts. MACEMC treats a target
application as a single program that composes every node with a simulated network environment for
distributed applications. With such a system wrapper, at any time, MACEMC selects a node and one
of its pending events to call the corresponding event handler to transition the system to the next state.



MACEMC MODIST

PRLocal 1,006 574

CompWrap 108 183

Total 1,114 757

DEMETER Common 7,279

Table 1: Development cost as lines of code for DEMETER, DEMETER-MACEMC, and DEME-
TER-MODIST.

This is considered one transition; each pending event therefore corresponds to an enabled transition.
Control returns to MACEMC when a transition completes, while a transition could introduce new
events to the system. MACEMC repeats this process as long as there are pending events.

For state-space exploration, MACEMC must control all sources of non-determinism, such as the
scheduling of pending events, the use of a special Toss command in event handlers, or the use of
timeouts in event handlers. In the implementation of MACEMC, the RandomUtil module in MACE

controls such non-determinism in the system. Nodes in MACE interact with each other via TCP/UDP
services. Each transition could trigger send operations that will enable corresponding receive events
on receiving nodes. Transitions containing send or receive operations are candidates for interface
transitions.

MACEMC’s system wrapper therefore exposes and controls RandomUtil, as well as send and receive
operations. Because the information associated with send and receive operations is insufficient (e.g.,
for identifying the destination of a send operation), a component wrapper has to trace it down in
MACE to fill the needed information for interface transitions. In some cases, depending on how a
component is defined, a send or receive operation might not be an interface transition. This happens
when the receiving node is in the same component as the sender.

Data-structure conversion between MACEMC and DEMETER is relatively simple. Nodes in MACE

are units of execution and we use node id as the thread identifier. Events in MACE have information
about corresponding transitions. DEMETER does require recording any non-deterministic choices
within an event handler. In fact, DEMETER enumerates all such choices to find out the set of pos-
sible transitions because different non-deterministic choices correspond to different transitions for
the processing of an event. Each transition in MACE may contain multiple network operations that
DEMETER must store to define interface transitions appropriately. MACEMC does not track partial-
order dependencies. Without making any internal changes within MACEMC, DEMETER tracks de-
pendencies for interface transitions conservatively where any two transitions from the same node are
assumed to be dependent. As shown in Section 5, this conservative way of defining partial order has
significant implications on the effectiveness of DIR.

MACEMC implements two search algorithms. The first is a depth-first search (DFS) that enumerates
all possible execution paths with an execution depth bound and is used to verify safety properties in a
limited state space. The other one is a random walk algorithm that is used to detect potential liveness
bugs. We apply DEMETER only to improve the DFS part of MACEMC since its random exploration
does not check whether a randomly executed transition introduces a redundant trace, and hence it
gives up any hope of reducing redundancies or achieving any notion of completeness.

MODIST Integration. MODIST is a software model checker that detects bugs due to non-determinism
in distributed applications. In MODIST, any concurrent program behavior can be modeled as different
invocation orders of Win32 APIs, such as EnterCriticalSection and WaitForSingleObject. MODIST

provides a module called dist_sys that maintains the application state and captures most Win32 API
invocations of a target application, including synchronization, network, and file-system operations.
This module constitutes the system wrapper for MODIST.



In MODIST, a transition is defined as an execution between two consecutive invocations of system
APIs. There is a straightforward mapping between MODIST’s data structures and DEMETER’s.
Process Id and thread Id are combined to identify a thread, while the operation of each transition can
be identified by the MODIST id of the corresponding Win32 API. MODIST itself maintains traces as
a partial order and its vector clock can be used directly in DEMETER’s common data structure.

MODIST’s state-space exploration uses DFS with dynamic partial-order reduction. This algorithm
is designed for a general transition system and requires a partial-order dependency relation between
transitions. Local explorers in DEMETER directly use this state-space exploration algorithm in their
partial-replay local system.

5. EXPERIMENTS AND EVALUATIONS
In this section, we describe our experiments on DEMETER and report findings of our evaluation
results on DEMETER-MACEMC and DEMETER-MODIST, two real model checkers that we have
built in DEMETER by incorporating MACEMC and MODIST. We conduct all of our experiments on
a cluster of machines (Intel Xeon x5550 2.67GHz CPU, 12GB main memory) on a 1Gb Ethernet.

Our experiments use representative applications for DEMETER-MACEMC and DEMETER-MODIST.
For DEMETER-MACEMC, we check PASTRY and CHORD, two well-known peer-to-peer distributed
hash-table implementations on MACE, as well as PAM, an unoptimized PAXOS implementation on
MACE for a single consensus decision. PAM was independently developed by a student. For DEME-
TER-MODIST, we choose MPS, a production PAXOS implementation that has been running in Mi-
crosoft data centers for years and contains about 53K lines of code. We also check Berkeley DB
(BDB), a widely used open-source transactional storage engine that supports replication for applica-
tions requiring high availability. We check its release version 4.7.25.NC as done with the original
MODIST [39]. We use an example application ex_rep_mgr that comes with BDB as the test driver.
This application manages its data using the replication manager of BDB. During the test, the multiple
replicas first run an election. Once completed, the elected primary creates worker threads to modify
the replicated database simultaneously. We have also implemented the standard Dining Philosophers
Problem (DPhi) mostly for validation/debugging because we know the expected results in this case.

Our experiments are designed to evaluate the following three key aspects: (i) on effectiveness, how
effective is DIR for reducing state spaces, and what factors could affect its effectiveness? (ii) on
performance, cost, and parallelism, how much overhead does the extra complexity of DEMETER

incur in model checking and how does the capability of state-space exploration increase with the
use of more machines? (iii) on experience with verification and bug finding using DEMETER, does
the state-space reduction translate into improved ability to cover a meaningful logical state space
completely, and does it help find bugs more effectively?

5.1 Effectiveness
To estimate the effectiveness of DIR, we run DEMETER on target applications and record the number
of local traces that have been explored by the local explorers. We then compute the number of global
traces that are covered by those local traces. The computation is performed as follows: for each
global skeleton κ , let nc be the number of local traces in component c that are interface-equivalent
with κ on c’s interface. These local traces can compose across components to create global traces,
whose number is then Πc∈C (nc). Let ng be the sum on the number of global traces over all global
skeletons. We then compute the reduction ratio as ng divided by the number of explored local traces
on all the local explorers.

Table 2 reports the reduction ratio (Red-Ratio), the actual number of global skeletons discovered,
and the number of local traces explored. We run target applications in different settings in terms
of the number of nodes (components) and perform each model checking for hours. App-n refers
to the application running with n nodes (components), except that DPhi-n has n components with
each containing 8 philosophers. Overall, we are seeing significant state-space reduction with the



reduction ratio ranging from 5 to over 500,000. We see a significant increase when moving from a
2-node to a 3-node system due to the multiplicative factor. Notice that all the applications in Table 2
except MPS, BDB, and CHORD-3 can also be fully checked by the original model checker. For those
applications, we have validated the calculated value of ng used for reduction ratio with the number
of traces explored by the original model checker. This confirms that DEMETER with DIR upholds
completeness and provides the justification to use calculated ng for reduction ratio when the state
space is too large to be fully explored by the original model checker.

Appli- Red- Global Local RT- Speed-
cation Ratio Skel Trace Ratio up

DPhi-2 41.7 6 1,510 2.0 20.9
DPhi-3 7,098.0 25 2,236 1.2 5,915.0
MPS-2 487.9 5 5,599 3.2 152.5
MPS-3 542,944.0 457 377,965 2.5 217,177.6
BDB-2 277.2 527 25,113 5.6 49.5
BDB-3 278,481.2 664 50,592 6.3 44,203.4

Pam-2 5.4 39 856 2.3 2.3
Pam-3 97.8 65 6,081 5.2 18.9

Pastry-2 4.9 48 713 1.5 3.3
Pastry-3 132.4 2,220 7,360 9.7 13.6
Chord-2 19.0 48 3,282 2.7 7.0
Chord-3 1,587.0 1,326 17,384 2.9 547.2

Table 2: State-space reduction and cost reduction of DEMETER. The applications in top-half
of the table are checked by DEMETER-MODIST, while the ones in bottom-half are checked by
DEMETER-MACEMC.

The reduction ratios for MPS and BDB are particularly impressive. For MPS, each node is imple-
mented with multiple threads that have to synchronize with others using EnterCriticalSection, e.g.,
to access a shared message queue. A significant portion of such different interleaving does not lead
to changes in the interface, thereby resulting in state-space reduction. Most of such interleaving is in
the underlying common network library, which is fairly complicated as it supports various forms of
networking (e.g., AsyncIO with completion port). Similarly, BDB employs multiple threads to han-
dle the delivered messages and update shared database or replication-related data structures. It also
uses WSAEventSelect to process asynchronous network events. Again, most of the complex internal
non-determinisms do not propagate across interfaces.

Although respectable, the reduction ratios for applications in MACE are relatively low. Our investi-
gation shows that numbers of local traces for each global skeleton are relatively small in part because
of our conservative partial-order tracking for DEMETER-MACEMC: two send transitions from the
same node are always considered to have dependencies. Different orders of two inherently concur-
rent sends (on two separate threads, for example) would lead to different global skeletons. If their
dependencies were accurately modeled, as MODIST does, they would be considered independent and
their relative order due to intra-node non-determinism would not matter to other nodes, which would
lead to a smaller number of global skeletons and better reduction.

5.2 Performance, Cost, and Parallelism
The reduction ratio tells only part of the story. The cost of exploring a trace in DEMETER can be
noticeably higher due to the extra complexity related to DIR, which includes the extra cost in the
partial-replay local system of the local explorer (e.g., computing the signature of the local skeleton
for each local trace to check whether it is a branching trace), as well as the cost of composition
and projection in the global explorer. In our experiment, we compute RT-Ratio as the relative cost of
exploring a local trace in DEMETER with respect to the cost of exploring a global trace in the original
model checker. The cost of exploring a local trace in DEMETER is the total amount of time spent
on all the local explorers and the global explorer, amortized over the total number of explored local
traces. As shown in Table 2, the RT-Ratios are significantly less than the Red-Ratios, which means
that, although for the execution of a given trace, DEMETER is slower than original model checkers, it
wins by exploring far fewer executions. We measure the effective speedup, without considering any
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Figure 7: Numbers of explored local traces over time for MPS-3, with different numbers of
worker machines.

potential parallelism in DEMETER, as Red-Ratio divided by RT-Ratio. These results are shown as
Speedup in Table 2. For MPS-3, we are seeing an effective speedup of over 105, while for PAM-2 the
speedup is only about 2.

While having a small number of nodes is sufficient to discover many protocol-level issues, in order
to understand how the reduction effectiveness and the composition cost scale with the number of
components, we did also run MPS with 5 nodes for 1.5 hours (without completely searching local state
spaces for each global skeleton): the reduction ratio and speedup already reached 109, confirming the
trend of increased effectiveness with increased number of components. We also noticed a significant
increase in the cost of composition: an order of magnitude increase from MPS-3. We are likely to
run into scalability issues at some point with the global explorer. Section 6.1 discusses how we might
address those issues.

Scalability. RT-Ratio and Red-Ratio do not take into account the effect of distributed and parallel
execution. We further evaluated the inherent parallelism in DEMETER by deploying it on a cluster
of machines. The goal of the experiment is to understand the increased effectiveness in state-space
exploration as it uses more machines. We use DEMETER-MODIST on MPS as the showcase and vary
the number of machines running MC Workers. Separately, we have one machine running the global
explorer and three more as the local explorers, one for each component, coordinating MC Workers.

We run each experiment for about 7 hours. Figure 7 shows the numbers of discovered local traces
over time with different numbers of worker machines. In each case, DEMETER is able to explore new
local traces linearly over time and we also see near-perfect scalability as the number of machines goes
up. This demonstrates (i) partial-replay local systems are embarrassingly parallel and (ii) composition
by the global explorer does not become a bottleneck and can always dispatch enough local skeletons
to make each worker machine busy when the local workers can discover and report enough new
branching traces for composition in a short period of initial time.

5.3 Experiences
It is natural to ask whether or not the observed significant state-space reduction translates into any tan-
gible benefits for improving system reliability. In particular, we look at two aspects: (i) DEMETER’s



ability to explore completely a meaningful logically bounded state space of a system implementation
for a higher degree of reliability assurance and (ii) how DEMETER improves our ability to find bugs.

Our experiment shows that DEMETER is capable of completely exploring a logically meaningful state
space of a 3-node CHORD and MPS without any artificial bound on exploration depths. We do have
to make the system finite: for CHORD, the system ends as soon as all three nodes join successfully
with timeout fired at most once at each node. For MPS, we bound ballot numbers (to 2) and decree
numbers (to 1). Such logical bounds still allow for a vast number of scenarios covering both phases
of the PAXOS protocol. To see why previous model checkers do not come close to finishing the
exploration, our CHORD exploration took 3 hours, exploring 17,384 local traces that correspond to
27,588,408 global traces, which would take more than 2 months for MACEMC to explore. Similarly,
the exploration of DEMETER on MPS took 18 hours, exploring 182,689 local traces that correspond
to 7,743,820,726 global traces, which would take about 34 years for MODIST to explore, even with
its already significant partial-order methods for state-space reduction.

We believe the ability to explore thoroughly a meaningful logical state-space of a real implementation
is significant. It offers a higher degree of assurance for system reliability as basic implementation-
level protocol behaviors have now been “verified”. Such kind of coverage statement for implemen-
tation was not possible before with the existing implementation-level model checkers and with the
existing state-space exploration and reduction strategies on any non-trivial real production system.

Bug Finding. DEMETER naturally looks for safety bugs through state-space exploration. Finding
liveness bugs often require a special set of strategies, as was done with MACEMC [29]. Those strate-
gies are often incompatible with DIR, although they might still benefit from DIR. Our investigation
focuses on safety bugs, while leaving liveness bugs to future work.

Our experiences with DEMETER on finding safety bugs are mixed, as significant state-space reduc-
tion does not translate automatically to proportional increases in bug-finding effectiveness. On the
positive side, we have found two serious bugs in PAM: the depths at which those bugs were found
are beyond the capability of the DFS search in MACEMC. The first bug arises due to loss of protocol
state during replica recovery. In a 3-node replica system with nodes a, b, and c, replica a initially
becomes a leader and passes a decree by getting the supporting vote from b only. Then b restarts from
a failure and incorrectly votes with c to pass a different decree, because b has lost its state (related
to a’s earlier actions) during failure/recovery. DEMETER found this bug in a trace with a total depth
of 27. The second bug is due to an incorrect vote message. When a leader receives accepted values
in phase 1, it must vote in phase 2 the accepted value with the highest ballot number. The initial
implementation incorrectly chose the first received value instead. This bug appears only when two
different values were accepted on two different nodes and in our experiment involves a trace with a
total depth of 43.

On the negative side, we did not find any new bugs when running DEMETER on MPS, BDB, PASTRY,
and CHORD through a simple brute-force search. We found only the first bug in PAM. Bug finding
turns out to be significantly different from covering a state space. When a state space is large, it is
more effective to cover as many interesting scenarios as possible. Bug finding is therefore best guided
with application-specific knowledge and DEMETER offers a more powerful tool for this guided pro-
cess. For example, rather than focusing on the initial phase and running a system for a long time,
we periodically stop the system to get a checkpoint and start a new exploration from that checkpoint
if we think that checkpoint state is “interesting” (e.g., having replicas with inconsistent states). We
essentially do vertical decomposition of system execution and prune out “uninteresting” branches.
This allows DEMETER to explore longer traces more effectively. The second PAM bug was found
this way through 3 “inconsistent” checkpoints as stepping stones. The final buggy path is the result
of concatenation of these sub-paths.

6. DISCUSSIONS



This section discusses three subtle issues that affect the effectiveness of DIR: how to define compo-
nents, how to check global properties, and how to avoid branching redundancies.

6.1 Defining Components
The effectiveness of DIR depends on how a target system is partitioned into components. One nat-
ural way is to make each process a component. In our experience, this simple approach is effective
because processes in a distributed system tend to communicate with each other through message
passing, where the design tends to minimize communication between them for performance reasons.
Application logic within a process is often implemented with multiple threads and asynchronous I/O
for high performance, which introduces substantial sources of non-determinism in it. Therefore, in-
teractions between processes can be significantly simpler than non-determinism within each process,
leading to significant state-space reduction when explored with DIR.

It is also possible to group multiple processes together to form a component. Even with processes
running the same code, different groupings often have different effects, due to different roles the
processes play in an application. For example, in dining philosophers, it makes sense to group con-
secutive philosophers together because doing so will lead to an interface with only two forks no
matter how many philosophers are included in that component. In the worst case, if philosophers
are divided into two components in alternation, all forks will become interface objects. Even for the
3-node cases of PASTRY and CHORD, nodes 1 and 2 have more interactions between them. Our ex-
periments show better reduction ratios when grouping those two into a group, compared to grouping
nodes 2 and 3 in a component, although having three components yields the best reduction ratios.

The decision of whether certain processes should be grouped together as one component depends on
a number of factors. Tightly coupled processes should ideally be grouped together, although this will
increase the complexity of partial-replay local systems. When the number of components is high,
the number of global skeletons goes up exponentially, which increases the overhead on the global
explorer. We have developed an algorithm called hierarchical dynamic interface reduction to address
this issue further. It reduces the overhead on the global explorer by recursively dividing a system
into a small number of components at each level. We have shown the effectiveness of this method
on dining philosophers, which leads to exponential state-space reduction in theory. We have yet to
show that the added complexity brings significant practical benefits on real applications. Peer-to-peer
protocols such as PASTRY and CHORD are ideal targets.

6.2 Global Property Checking
Not only can DEMETER discover local assertion failures and misbehavior during state-space ex-
ploration, but can also be used to check global safety properties. The ideal place to perform global
property checking is at the global explorer as it has a global view on a system via global skeletons and
global traces. To facilitate global property checking, each component has to expose not only interface
transitions but also any local states that are referenced by the specified global property. Updates to
local variables referenced will have to be reported. Those states are taken into account when assess-
ing whether an execution creates a branching trace, although local skeletons for the local explorers do
not have to contain such states because they are not used in partial-replay local systems. All such in-
formation is incorporated into global skeletons during the composition process. The global explorer
can then enumerate all the consistent snapshots of those state variables on all the global skeletons
to check global properties. From our experience, adding global property checking into DEMETER-
MODIST is natural as MODIST has the mechanism to expose states. Adding the same functionality
to DEMETER-MACEMC is harder because the state variables are not easily exposed in MACEMC.

6.3 Branching Redundancy
DEMETER builds a partial-replay local system for each local skeleton. A branching trace is not part
of a local state space, but should be counted as overhead for local exploration. We have observed that
some trace prefixes are explored in multiple partial-replay local systems for different skeletons, once



as part of local traces in one, and again as part of branching traces in another. This leads to redun-
dant state-space exploration by partial-replay local systems for different local skeletons. DEMETER

could explore a branching trace multiple times since it does not know whether that branching trace is
already explored in other partial-replay systems. One solution to this problem is to have DEMETER

explore all partial-replay systems of a component on a single worker to avoid such redundancies as
the redundancies are among MC Workers for the same component. As a result, DEMETER’s parallel
granularity is now limited to the number of components. However, we can accelerate the exploration
by parallelizing the exploring algorithm itself. For example, it is possible to have a different worker
exploring a sub-tree space of a particular local-state partial-replay system. One caveat is the potential
interactions with the state-space exploration strategy in an eMC: for example, MODIST uses dynamic
partial order reduction, where the exploration of a sub-tree space might need to add new transitions
to the execution points above that subtree.

7. RELATED WORK
Model Checking. Model checkers have previously been used to find bugs in both the design and
implementation of software. Traditional model checkers require that users transform a target system
into an abstract model beforehand [11, 34, 2, 14, 26, 27]. This process is often expensive and error-
prone, thereby limiting the use of these tools for large-scale software systems. Implementation-
level software model checkers [18, 36, 32, 41, 40, 39, 33, 29, 38] can instead work directly on
implementations of software systems by systematically controlling executions and exploring non-
determinisms in a system implementation.

Both traditional model checkers and software model checkers have to face the problem of state-space
explosion. Based on the observation that complex large-scale systems normally consist of loosely-
coupled components, compositional reasoning techniques [6, 35, 12, 4, 22, 31] have been proposed
and applied for effective state-space reduction. Such methods check each component of a system in
isolation and infer global system properties appropriately. However, all of the previous proposals tar-
get only traditional model checkers. Some of them need substantial human effort [22, 31], and hence
are not scalable. Others [6, 35, 12], although automatic, require eagerly constructing an abstract com-
ponent acting as the environment of a component being checked, making it impractical for complex
large-scale systems. In contrast, DEMETER applies DIR to software model checkers by lazily and
dynamically discovering all interface interactions among components, thereby significantly reducing
the amount of human effort and removing any need for static program analysis to transform a system
implementation or its environment into an abstract model.

Alur and Yannakakis [1] applied model checking on hierarchical state machines where the state nodes
of a state machine can be ordinary states or state machines themselves. Their method leverages this
hierarchical structure of the state machines to avoid exploring the same sub-state-machine multi-
ple times. Their method applies to formal sequential hierarchical state-machine specifications only,
whereas DIR targets implementation-level model checking of concurrent and distributed systems
without formal specifications.

The most related method was proposed recently by Guerraoui and Yabandeh [23] to separate the
exploration of system states (i.e., the combination of node-local states) and network states. The
proposed method takes an optimistic approach and does not model dependencies between network
transitions. This imprecision leads to loss of soundness, which has to be addressed using a compen-
satory validity check. In contrast, our approach tracks dependencies explicitly and ensures soundness
during exploration.

State-Space Reduction. Other state-space reduction techniques, such as partial order reduction [17,
16], symmetry reduction [28], and abstraction [25, 10, 3, 13, 21], have been proposed and investi-
gated. Those techniques are orthogonal to DIR and can often be applied together. For example, the
analysis presented in Section 2.3 on the example in Figure 1 helps to show why DIR is orthogonal to
partial order reduction (POR). POR states that it is sufficient to explore only one permutation order of



a set of independent operations. For instance, only one order of the Sum in the primary and the Ckpt
in the secondary need be explored because they are independent. Fundamentally, POR still views a
system as a whole. Thus, when the Sum and Ckpt operations within one server interleave differ-
ently, POR has to re-explore the entire system. Nonetheless, combining the two reduction techniques
is easy as both the global explorer and the local explorers in DIR can use POR to reduce the number
of executions they explore. In fact, when integrating with MODIST, we have effectively enabled
both POR and DIR. It is an interesting future direction to see whether other state-space reduction
techniques are compatible with the architecture of DEMETER.

Error-Detection Techniques. Recently, symbolic execution [8, 7, 20, 9] has been used to detect er-
rors in real systems. This technique takes program inputs as symbolic values and explores all possible
execution paths by solving the corresponding path conditions. Similar to model checking, symbolic
execution also confronts the problem of state-space explosion. SMART [19] applied composition
in symbolic execution at function granularity. It checks functions in isolation, encoding the results
as function summaries expressed using input preconditions and output postconditions, and then re-
using those summaries when checking higher-level functions. However, their idea cannot be applied
in checking concurrent/distributed systems. Zamfir and Candea [42] further enhanced symbolic exe-
cution to support concurrent systems by making thread-scheduling decisions symbolic. It is again an
interesting future research direction to understand whether an idea similar to DIR would help in this
scenario.

Software Verification. Many attempts have been made to verify software implementations [30, 37, 5,
24, 3, 15]. BLAST [24] and SLAM [3] combine predicate abstraction and model checking techniques
to analyze and verify specific safety properties of device drivers. Model checking is complementary
in that it can be used to check a bounded small state space thoroughly and to provide some assurance
by attempting to find defects when complete verification is infeasible.

8. CONCLUSIONS
DEMETER provides early validation on dynamic interface reduction and closes the gap between
a theoretically interesting algorithm and a practical model checking framework that demonstrates
its effectiveness on representative distributed systems with real model checkers. Experiences with
DEMETER further shed lights on several interesting future directions. First, removing any scalability
hurdle to applying DEMETER to a large number of components could further unleash the power of
this reduction. Second, further pushing the boundary of state spaces that can be completely explored
could make model checking a useful tool for software reliability assurance. Third, finding bugs
effectively with DEMETER requires a different thinking from covering a state sub-space completely
and might need guidance with domain knowledge.
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APPENDIX
A. PROOF SKETCH
In this section, we prove that the algorithms for the global explorer and the local explorer in Sec-
tion 3.4 preserve both soundness and completeness. The proofs use the substitution rule introduced
in Section 3.4 as an “axiom” that follows directly from the definitions of components, interfaces, and
interface equivalence.

A.1 Soundness
Lemma A.1. With respect to 〈κc,τ〉 ∈ Lc, where τ is a valid global trace, the partial-replay local
system produces a valid global trace in every exploration step. A global trace is valid if its execution
can occur in a real run of the checked system.

Proof. Consider a system consisting of component c and the rest of the system R. A partial-replay
local system for component c with respect to 〈κc,τ〉 ∈ Lc starts from the initial state and in each
step either picks an enabled transition from component c or replays τ’s transitions in R. To enable
replaying, the partial-replay local system tracks which of τ’s transitions in R can be replayed: a



transition t in τ can be replayed if and only if t is a transition from R and any transition t ′ 	= t in
localR(τ) satisfying t ′ � t has been replayed in previous steps. The transitions replayed in R and the
interface transitions from component c always form a prefix of localR(τ). Therefore, at any step, there
exists a prefix τp of τ such that localR(τp) captures all replayed transitions projected to R (including
both R’s internal transitions and interface transitions) and their partial order.

The partial-replay local system preserves the partial order between transitions in localc as in the
original system and between transitions in localR(τ) as in τ . By definition, the transitions taken in
c and the interface transitions related to c form a projection of some valid trace τ1 (i.e., localc(τ1)
captures all transitions in c and all the interface transitions for c). The trace that the partial-replay
local system produces is therefore substc(τp,τ1). Due to the substitution rule, it is a valid trace.

Lemma A.2. (i) For each 〈κ,τ〉 ∈ G, τ is a valid global trace, (ii) for each 〈tb,τb〉 ∈ B, τb is a valid
global trace, and (iii) for each 〈κc,τ〉 ∈ Lc for any component c, τ is a valid global trace.

Proof. Prove by induction on the order of the entries added into sets G, B, and Lc’s.

Initially, the algorithm uses a real global execution to find a global trace to add to G. That global
trace is valid by construction. For the induction step, assume that all entries in G, B, and Lc satisfy
the conditions. We consider the following cases:

Case 1: A new entry 〈κc,τ〉 is added into Lc. There must exist some 〈κ,τ〉 ∈G satisfying localc(κ) =
κc. By the induction hypothesis, τ is a valid global trace.

Case 2: A new entry 〈tb,τb〉 is added to B. This is because tb is a branching transition at trace τb when
executing a partial-replay local system for c with respect to some 〈κc,τ〉 ∈ Lc for some component
c. By the induction hypothesis, τ is a valid trace. τb is a valid trace by the construction of the
partial-replay local system due to Lemma A.1.

Case 3: A new entry 〈κn,τn〉 is added into G. This is because there exists 〈tb,τb〉 ∈ B and 〈κg,τg〉 ∈ G
satisfying localc(κg) = skel(localc(τb)), τn = substc(τg,τb)◦ tb, and κn = skel(τn). By the induction
hypothesis, τb is a valid global trace and τg is a valid global trace. Following the substitution rule,
substc(τg,τb) is a valid trace. By the construction of 〈tb,τb〉, tb is a valid transition in substc(τg,τb)
because it is an enabled transition from c in τb. Therefore, τn = substc(τg,τb)◦ tb is a valid trace.

Theorem A.3. For any local trace τc that the local explorer for component c discovers, there exists
a valid global trace τ , such that τc = localc(τ).

Proof. Follows directly from Lemma A.1 and Lemma A.2.

A.2 Completeness
Theorem A.4. Assume a local explorer with the eMC and the partial-replay local system explores
completely the enabled transitions in a component, for any valid global trace τg, the global explorer
eventually adds 〈skel(τg),τ〉 into G for some global trace τ . For every component c, the local explorer
discovers localc(τg).

Proof. Assume there exists a valid global trace τg that invalidates the theorem, i.e., either some of its
projected local traces for components cannot be explored by the local explorers, or its corresponding
global skeleton cannot be discovered by the global explorer. There must be a longest prefix τp of
this global trace τg that satisfies the following properties: (i) the local trace τx = localx(τp) for any



component x has been explored by the local explorer of x and (ii) there exists a global trace τg
p , such

that 〈skel(τp),τ
g
p〉 has been discovered by the global explorer and is therefore in G.

Let t be the subsequent transition of τp in τg: by definition of τp and τg, such a transition must exist.
Without loss of generality, let t be a transition belonging to a component c. Transition t will be
enabled during the local exploration of c against τc = localc(τp) according to the substitution rule.
We consider two cases.

Case 1: t is an internal transition. We show that τp ◦ t satisfies (i) and (ii) as τp does. Because t is
enabled at τc, the local explorer for c will take this transition, reaching the projection of τp ◦ t to c.
For any other component, the projection of τp ◦ t is the same as that of τp. Because t is an internal
transition, skel(τp ◦ t) is also the same as skel(τp). Because τp ◦ t is a prefix of τg longer than τp, we
have a contradiction with the definition of τp.

Case 2: t is an interface transition. Because t is enabled at τc, the local explorer will take this
transition. Again, we show that τp ◦ t satisfies (i) and (ii) as τp does. The part of the proof about
(i) is the same as in Case 1. For (ii), we need to show that the global explorer discovers skel(τp ◦ t)
through composition by substitution. Let τb be the global trace that the partial-replay local system
constructs when reaching τc. We have τc = localc(τb). Pair 〈t,τb〉 will be reported to the global
explorer. Because 〈skel(τp),τ

g
p〉 ∈G and localc(skel(τp)) = skel(localc(τb)) hold, the global explorer

will construct a new global trace τn = substc(τ
g
p,τb)◦ t and discovers skel(τn). By construction, we

have skel(substc(τ
g
p,τb)) = skel(τp). Therefore, we have skel(τn) = skel(τp ◦ t), which means that

(ii) holds for τp ◦ t. Again, because τp ◦ t is a prefix of τg longer than τp, we have a contradiction with
the definition of τp.
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