
Breaking Up is Hard to Do: Security and
Functionality in a Commodity Hypervisor

Patrick Colp†, Mihir Nanavati†, Jun Zhu‡, William Aiello†,
George Coker∗, Tim Deegan‡, Peter Loscocco∗, and

Andrew Warfield†

†Department of Computer Science, University of British Columbia
‡Citrix Systems R&D, ∗National Security Agency

ABSTRACT
Cloud computing uses virtualization to lease small slices of large-scale datacenter facilities to indi-

vidual paying customers. These multi-tenant environments, on which numerous large and popular

web-based applications run today, are founded on the belief that the virtualization platform is suffi-

ciently secure to prevent breaches of isolation between different users who are co-located on the same

host. Hypervisors are believed to be trustworthy in this role because of their small size and narrow

interfaces.

We observe that despite the modest footprint of the hypervisor itself, these platforms have a large

aggregate trusted computing base (TCB) that includes a monolithic control VM with numerous in-

terfaces exposed to VMs. We present Xoar, a modified version of Xen that retrofits the modularity

and isolation principles used in microkernels onto a mature virtualization platform. Xoar breaks the

control VM into single-purpose components called service VMs. We show that this componentized

abstraction brings a number of benefits: sharing of service components by guests is configurable and

auditable, making exposure to risk explicit, and access to the hypervisor is restricted to the least priv-

ilege required for each component. Microrebooting components at configurable frequencies reduces

the temporal attack surface of individual components. Our approach incurs little performance over-

head, and does not require functionality to be sacrificed or components to be rewritten from scratch.

1. INTRODUCTION
Datacenter computing has shifted the criteria for evaluating systems design from one that prioritizes

peak capacity and offered load, to one that emphasizes the efficiency with which computing is deliv-

ered [2, 5, 47, 45]. This is particularly true for cloud hosting providers, who are motivated to reduce

costs and therefore to multiplex and over-subscribe their resources as much as possible while still

meeting customer service level objectives (SLOs).

While the efficiency of virtualization platforms remains a primary factor in their commercial success,

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

User A’s VM

Hypervisor

Control VM
aka Domain 0

User B’s VM

Monolithic Trust Domain

Administrative Tools

Live Migration

Device Drivers

Device Emulation

Trap/Hypercall API
Individual “Service” APIs

Administrative Network

Figure 1: The control VM is often a full operating system install, has privilege similar to the

hypervisor, and offers multiple services over numerous interfaces to guest VMs.

their administrative features and benefits have been equally important. For example, hardware fail-

ures are a fact of life for large hosting environments; such environments rely on functionality such

as live VM migration [13] for planned hardware replacements as well as unexpected failures [8, 15].

Hardware diversity is also inevitable in a large hosting facility; the use of hardware emulation and

unified virtual devices means that a single VM image can be hosted on hardware throughout the facil-

ity without the need for device driver upgrades within customer VMs. Administrative benefits aside,

the largest reason for the success of virtualization may be that it requires little or no change to exist-

ing applications. These three factors (resource utilization, administrative features, and the support of

existing software) have allowed the emergence of large-scale hosting platforms, such as those offered

by Amazon and Rackspace, that customers can trust to securely isolate their hosted virtual machines

from those of other tenants despite physical co-location on the same physical hardware.

Are hypervisors worthy of this degree of trust? Proponents of virtualization claim that the small

trusted computing base (TCB) and narrow interfaces afforded by a hypervisor provide strong isola-

tion between the software components that share a host. In fact, the TCB of a mature virtualization

platform is larger than that of a conventional server operating system. Even Type-1 hypervisors, such

as Xen [4] and Hyper-V [22], rely on a privileged OS to provide additional shared services, such as

drivers for physical devices, device emulation, and administrative tools. While the external interfaces

to these services broaden the attack surface exposed to customer VMs, the internal interfaces between

components within that OS are not as narrow or as carefully protected as those between components

of the hypervisor itself. This large control VM is the “elephant in the room”, often ignored in dis-

cussing the security of these systems.

While TCB size may not be a direct representation of risk, the shared control VM is a real liability

for these systems. In Xen, for instance, this control VM houses a smorgasbord of functionality:

device emulation and multiplexing, system boot, administrative toolstack, etc. Each of these services

is presented to multiple customer VMs over different, service-specific interfaces (see Figure 1). As

these services are all part of a single monolithic TCB, a compromise of any of them places the entire

platform in danger.

The history of OS development shows us how to address the problem of a large TCB: break it into

smaller pieces, isolate those pieces from each other, and reduce each one to the least privilege consis-

tent with its task [43]. However, the history of OS deployment demonstrates that “secure by design”

OSes often generate larger communities of readers than developers or users. In this vein, from-

scratch hypervisors [38, 40, 42] have shown that particular security properties can be achieved by

rearchitecting the platform, but they do not provide the rich set of features necessary for deployment

in commercial hosting environments.

The work described in this paper avoids this compromise: we address the monolithic TCB presented

by the control VM without reducing functionality. Instead, we hold the features of a mature, deployed

hypervisor as a baseline and harden the underlying TCB. Our approach is to incorporate stronger

isolation for the existing components in the TCB, increasing our ability to control and reason about

exposure to risk. While full functionality is necessary, it is not sufficient for commercial deployment.

Our approach adds only a small amount of performance overhead compared to our starting point

full-featured virtualization platform.

1.1 Contributions
The primary contribution of this paper is to perform a component-based disaggregation of a mature,

broadly deployed virtualization platform in a manner that is practical to incorporate and maintain.

Our work takes advantage of a number of well-established mechanisms that have been used to build

secure and reliable systems: the componentization of microkernels, freshening of component state

using microreboots [10], and the use of recovery boxes [3] to allow a small set of explicitly designated

state to survive reboots. The insight in this work is that these techniques can be applied to an existing

system along the boundaries that already exist between processes and interfaces in the control VM.

We describe the challenges of decomposing Xen’s control VM into a set of nine classes of service

VMs while maintaining functional, performance, and administrative parity. The resulting system,

which we have named Xoar, demonstrates a number of interesting new capabilities that are not pos-

sible without disaggregation:

• Disposable Bootstrap. Booting the physical computer involves a great deal of complex, priv-

ileged code. Xoar isolates this functionality in special purpose service VMs and destroys these

VMs before the system begins to serve users. Other Xoar components are microrebooted to

known-good snapshots, allowing developers to reason about a specific software state that is

ready to handle a service request.

• Auditable Configurations. As the dependencies between customer VMs and service VMs

are explicit, Xoar is able to record a secure audit log of all configurations that the system has

been placed in as configuration changes are made. We show that this log can be treated as

a temporal database, enabling providers to issue forensic queries, such as asking for a list of

VMs that depended on a known-vulnerable component.

• Hardening of Critical Components. While a core goal of our work has been to minimize the

changes to source in order to make these techniques adoptable and maintainable, some crit-

ical components are worthy of additional attention. We identify XenStore, Xen’s service for

managing configuration state and inter-VM communication, as a sensitive and long-running

component that is central to the security of the system. We show how isolation and microre-

boots allow XenStore to be rearchitected in a manner whereby an attacker must be capable of

performing a stepping-stone attack across two isolated components in order to compromise the

service.

We believe that Xoar represents a real improvement to the security of these important systems, in a

manner that is practical to incorporate today. After briefly describing our architecture, we present a

detailed design and implementation. We end by discussing the security of the system and evaluate

the associated performance costs.

2. TCBS, TRUST, AND THREATS
This section describes the TCB of an enterprise virtualization platform and articulates our threat

model. It concludes with a classification of relevant existing published vulnerabilities as an indication

of threats that have been reported in these environments.

TCBs: Trust and Exposure. The TCB is classically defined as “the totality of protection mecha-

nisms within a computer system — including hardware, firmware, and software — the combination

of which is responsible for enforcing a security policy” [1]. In line with existing work on TCB re-

duction, we define the TCB of a subsystem S as “the set of components that S trusts not to violate

the security of S” [21, 33].

Enterprise virtualization platforms, such as Xen, VMware ESX, and Hyper-V, are responsible for

the isolation, scheduling, and memory management of guest VMs. Since the hypervisor runs at the

highest privilege level, it forms, along with the hardware, part of the system’s TCB.

Architecturally, these platforms rely on additional components. Device drivers and device emulation

components manage and multiplex access to I/O hardware. Management toolstacks are required to

actuate VMs running on the system. Further components provide virtual consoles, configuration

state management, inter-VM communication, and so on. Commodity virtualization platforms, such

as the ones mentioned above, provide all of these components in a monolithic domain of trust, either

directly within the hypervisor or within a single privileged virtual machine running on it. Figure 1

illustrates an example of this organization as implemented in Xen.

A compromise of any component in the TCB affords the attacker two benefits. First, they gain the

privileges of that component, such as access to arbitrary regions of memory or control of hardware.

Second, they can access its interfaces to other elements of the TCB which allows them to attempt to

inject malicious requests or responses over those interfaces.

Example Attack Vectors. We analyzed the CERT vulnerability database and VMware’s list of se-

curity advisories, identifying a total of 44 reported vulnerabilities in Type-1 hypervisors.1 Of the

reported Xen vulnerabilities, 23 originated from within guest VMs, 11 of which were buffer over-

flows allowing arbitrary code execution with elevated privileges, while the other eight were denial-

of-service attacks. Classifying by attack vector showed 14 vulnerabilities in the device emulation

layer, with another two in the virtualized device layer. The remainder included five in management

components and only two hypervisor exploits. 21 of the 23 attacks outlined above are against service

components in the control VM.

Threat Model. We assume a well-managed and professionally administered virtualization platform

that restricts access to both physical resources and privileged administrative interfaces. That is, we

are not concerned with the violation of guest VM security by an administrator of the virtualization

service. There are business imperatives that provide incentives for good behavior on the part of

hosting administrators.

There is no alignment of incentives, however, for the guests of a hosting service to trust each other,

and this forms the basis of our threat model. In a multi-tenancy environment, since guests may be

1There were a very large number of reports relating to Type-2 hypervisors, most of which assume the
attacker has access to the host OS and compromises known OS vulnerabilities — for instance, using
Windows exploits to compromise VMware Workstation. These attacks are not representative of our
threat model and are excluded.

less than well administered and exposed to the Internet, it is prudent to assume that they may be

malicious. Thus, the attacker in our model is a guest VM aiming to violate the security of another

guest with whom it is sharing the underlying platform. This includes violating the data integrity or

confidentiality of the target guest or exploiting the code of the guest.

While we assume that the hypervisor of the virtualization platform is trusted, we also assume that the

code instantiating the functionality of the control VM will contain bugs that are a potential source of

compromise. Note that in the case of a privileged monolithic control VM, a successful attack on any

one of its many interfaces can lead to innumerable exploits against guest VMs. Rather than exploring

techniques that might allow for the construction of a bug-free platform, our more pragmatic goal is

to provide an architecture that isolates functional components in space and time so that an exploit of

one component is not sufficient to mount a successful attack against another guest or the underlying

platform.

Xoar: Architecture

Xen

Bootstrapper:
Coordinate booting
of the rest of the
system.

Builder:
Instantiate other
VMs.

Toolstack:
Handles
management
requests.

PCIBack:
Virtualizes access
to PCI Bus con!g.

Self-Destructing VMs
Components of TCB
that are destroyed
after initialization.

Restartable VMs
Components where freshness is imposed
using periodic restarts.

Active Runtime
Dependencies

Restarted on
each request

Restarted on
a timer

NetBack:
Physical network
driver exported to
guest VMs.

BlkBack:
Physical storage
driver exported to
guest VMs.

Long-lived VM

XenStore-State:
In-memory contents
of XenStore.

XenStore-Logic:
Processes requests
for inter-VM comms
and con!g state.

Q
e

m
u

Q
e

m
u

Guest VM:
HVM Linux

Guest VM:
HVM Windows

Figure 2: Architecture of Xoar. The figure above shows all the classes of service VMs along

with the dependencies between them. For clarity, ephemeral dependencies (e.g., between the

Builder and the VMs that it builds) are not shown. As suggested in the figure, a Qemu service

VM is instantiated for the lifetime of each guest.

3. ARCHITECTURE OVERVIEW
Before explaining the design goals behind Xoar, it is worth providing a very high-level overview of

the components, in order to help clarify the complexities of the control plane in a modern hypervi-

sor and to establish some of the Xen-specific terminology that is used throughout the remainder of

the paper. While our implementation is based on Xen, other commercial Type-1 hypervisors, such

as those offered by VMware and Microsoft, have sufficiently similar structures that we believe the

approach presented in this paper is applicable to them as well.

3.1 The Xen Platform
The Xen hypervisor relies on its control VM, Dom0, to provide a virtualized I/O path and host a

system-wide registry and management toolstack.

Device Drivers. Xen delegates the control of PCI-based peripherals, such as network and disk con-

trollers, to Dom0, which is responsible for exposing a set of abstract devices to guest VMs. These

devices may either be virtualized, passed through, or emulated.

Virtualized devices are exposed to other VMs using a “split driver” model [17]. A backend driver,

having direct control of the hardware, exposes virtualized devices to frontend drivers in the guest

VMs. Frontend and backend drivers communicate over a shared memory ring, with the backend

multiplexing requests from several frontends onto the underlying hardware. Xen is only involved

in enforcing access control for the shared memory and passing synchronization signals. ACLs are

stored in the form of grant tables, with permissions set by the owner of the memory.

Alternatively, Xen uses direct device assignment to allow VMs other than Dom0 to directly interface

with passed-through hardware devices. Dom0 provides a virtual PCI bus, using a split driver, to proxy

PCI configuration and interrupt assignment requests from the guest VM to the PCI bus controller.

Device-specific operations are handled directly by the guest. Direct assignment can be used to move

physical device drivers out of Dom0, in particular for PCI hardware that supports hardware-based IO

virtualization (SR-IOV) [28].

Unmodified commodity OSes, on the other hand, expect to run on a standard platform. This is

provided by a device emulation layer, which, in Xen, is a per-guest Qemu [6] instance, running either

as a Dom0 process or in its own VM [44]. It has privileges to map any page of the guest’s memory

in order to emulate DMA operations.

XenStore. XenStore is a hierarchical key-value store that acts as a system-wide registry and naming

service. It also provides a “watch” mechanism which notifies registered listeners of any modifica-

tions to particular keys in the store. Device drivers and the toolstack make use of this for inter-VM

synchronization and device setup.

XenStore runs as a Dom0 process and communicates with other VMs via shared memory rings.

Since it is required in the creation and boot-up of a VM, it relies on Dom0 privileges to access shared

memory directly, rather than using grant tables.

Despite the simplicity of its interface with VMs, the complex, shared nature of XenStore makes it

vulnerable to DoS attacks if a VM monopolizes its resources [14]. Because it is the central repository

for configuration state in the system and virtually all components in the system depend on it, it is

a critical component from a security perspective. Exploiting XenStore allows an attacker to deny

service to the system as a whole and to perform most administrative operations, including starting

and stopping VMs, and possibly abusing interfaces to gain access to guest memory or other guest

VMs.

Other systems (including previous versions of Xen) have used a completely message-oriented ap-

proach, either as a point-to-point implementation or as a message bus. Having implemented all of

these at various points in the past (and some of them more than once), our experience is that they are

largely isomorphic with regard to complexity and decomposability.

Toolstack. The toolstack provides administrative functions for the management of VMs. It is respon-

sible for creating, destroying, and managing the associated resources and privileges of VMs. Creating

a VM requires Dom0 privileges to map guest memory, in order to load a kernel or virtual BIOS and

to set up initial communication channels with XenStore and the virtual console. In addition, the

toolstack registers newly created guests with XenStore.

System Boot. In a traditional Xen system, the boot process is simple: the hypervisor creates Dom0

during boot-up, which proceeds to initialize hardware and bring up devices and their associated back-

end drivers. XenStore is started before any guest VM is created.

3.2 Xoar
Figure 2 shows the architecture of Xoar, and will be referred to throughout the remainder of this

paper. In Xoar, the functionality of Xen’s control VM has been disaggregated into nine classes of

service VMs, each of which contains a single-purpose piece of control logic that has been removed

from the original monolithic control VM. As is the case with the monolithic TCB, some components

may have multiple instances, each serving different client VMs.

That these individual components may be instantiated more than once is important, as it allows them

to be used as flexible building blocks in the deployment of a Xoar-based system. Figure 2 shows

a single instance of each component other than the QemuVM. Later in the paper we will describe

how multiple instances of these components, with differing resource and privilege assignments, can

partition and otherwise harden the system as a whole.

From left to right, we begin with two start-of-day components that are closely tied to booting the

hypervisor itself, Bootstrapper and PCIBack. These components bring up the physical platform and

interrogate and configure hardware. In most cases this functionality is only required when booting

the system and so these components are destroyed before any customer VMs are started. This is a

useful property in that platform drivers and PCI discovery represent a large volume of complex code

that can be removed prior to the system entering a state where it may be exposed to attacks.

While PCIBack is logically a start-of-day component, it is actually created after XenStore and Builder.

XenStore is required to virtualize the PCI bus and the Builder is the only component capable of

creating new VMs on the running system. PCIBack uses these components to create device driver

VMs during PCI device enumeration by using udev [27] rules.

Three components are responsible for presenting platform hardware that is not directly virtualized by

Xen. BlkBack and NetBack expose virtualized disk and network interfaces and control the specific

PCI devices that have been assigned to them. For every guest VM running an unmodified OS, there

is an associated QemuVM responsible for device emulation.

Once the platform is initialized, higher-level control facilities like the Toolstacks are created. The

Toolstacks request the Builder to create guest VMs. As a control interface to the system, toolstacks

are generally accessed over a private enterprise network, isolated from customer VM traffic.

As in Xen, a VM is described using a configuration file that is provided to the toolstack. This con-

figuration provides runtime parameters such as memory and CPU allocations, and also device con-

figurations to be provided to the VM. When a new VM is to be created, the toolstack parses this

configuration file and writes the associated information into XenStore. Other components, such as

driver VMs, have watches registered which are triggered by the build process, and configure connec-

tivity between themselves and the new VM in response. While Xoar decomposes these components

into isolated virtual machines, it leaves the interfaces between them unchanged; XenStore continues

to be used to coordinate VM setup and tear down. The major difference is that privileges, both in

terms of access to configuration state within XenStore and access to administrative operations in the

hypervisor, are restricted to the specific service VMs that need them.

4. DESIGN
In developing Xoar, we set out to maintain functional parity with the original system and complete

transparency with existing management and VM interfaces, including legacy support, without incur-

ring noticeable overhead. This section discusses the approach that Xoar takes, and the properties that

were considered in selecting the granularity and boundaries of isolation.

Our design is motivated by these three goals:

1. Reduce privilege Each component of the system should only have the privileges essential to

assign_pci_device (PCI_domain, bus, slot)

permit_hypercall (hypercall_id)

allow_delegation (guest_id)

Figure 3: Privilege Assignment API

its purpose; interfaces exposed by a component, both to dependent VMs and to the rest of the

system, should be the minimal set necessary. This confines any successful attack to the limited

capabilities and interfaces of the exploited component.

2. Reduce sharing Sharing of components should be avoided wherever it is reasonable; when-

ever a component is shared between multiple dependent VMs, this sharing should be made

explicit. This enables reasoning and policy enforcement regarding the exposure to risk intro-

duced by depending on a shared component. It also allows administrators to securely log and

audit system configurations and to understand exposure after a compromise has been detected.

3. Reduce staleness A component should only run for as long as it needs to perform its task;

it should be restored to a known good state as frequently as practicable. This confines any

successful attack to the limited execution time of the exploited component and reduces the

execution state space that must be tested and evaluated for correctness.

To achieve these goals, we introduce an augmented version of the virtual machine abstraction: the

service VM. Service VMs are the units of isolation which host the service components of the control

VM. They differ from conventional virtual machines in that only service VMs can receive any extra

privilege from the hypervisor or provide services to other VMs. They are also the only components

which can be shared in the system, aside from the hypervisor itself.

Service VMs are entire virtual machines, capable of hosting full OSes and application stacks. Indi-

vidual components of the control VM, which are generally either driver or application code, can be

moved in their entirety out of the monolithic TCB and into a service VM. The hypervisor naturally

assigns privilege at the granularity of the tasks these components perform. As such, there is little

benefit, and considerable complexity, involved in finer-grained partitioning.

Components receiving heightened privilege and providing shared services are targets identified by

the threat model discussed in Section 2. By explicitly binding their capabilities to a VM, Xoar is able

to directly harden the riskiest portions of the system and provide service-specific enhancements for

security. The remainder of this section discusses the design of Xoar with regard to each of these three

goals.

4.1 Privilege: Fracture the Monolithic TCB
A service VM is designated as such using a serviceVM block in a VM config file. This block indi-

cates that the VM should be treated as an isolated component and contains parameters that describe

its capabilities. Figure 3 shows the API for the assignment of the three privilege-related properties

that can be configured: direct hardware assignment, privileged hypercalls, and the ability to delegate

privileges to other VMs on creation.

Direct hardware assignment is already supported by many x86 hypervisors, including Xen. Given a

PCI domain, bus, and slot number, the hypervisor validates that the device is available to be assigned

and is not already committed to another VM, then allows the VM to control the device directly.

Hypercall permissions allow a service VM access to some of the privileged functionality provided by

the hypervisor. The explicit white-listing of hypercalls beyond the default set available to guest VMs

allows for least-privilege configuration of individual service VMs. These permissions are translated

directly into a Flask [41] policy, which is installed into the hypervisor.

resource = [provider, parameters,

constraint_group=tag]

Figure 4: Constraint Tagging API

SELECT e1, e2 FROM log e1, log e2 WHERE

e1.name = e2.name AND

e1.action = ’create’ AND

e2.action = ’destroy’ AND

e1.dependency = ’NameOfCompromisedNetBack’ AND

overlaps(period_intersect(e1.time, e2.time),

compromise_period);

SELECT e1.name FROM log e1 WHERE

e1.dependency = ’NetBack’ AND

e1.dependency_version = vulnerable_version;

Figure 5: Temporal queries which search for guest VMs that depended on a service VM that

was compromised (top) or vulnerable (bottom).

Access to resources is restricted by delegating service VMs to only those Toolstacks allowed to

utilize those resources to support newly created VMs. Attempts to use undelegated service VMs are

blocked by the hypervisor, enabling coarse-grained partitioning of resources. In the private cloud

example presented at the end of this section, each user is assigned a private Toolstack, with delegated

service VMs, and has exclusive access to the underlying hardware.

4.2 Sharing: Manage Exposure
Isolating the collection of shared services in service VMs confines and restricts attacks and allows

an explicit description of the relationships between components in the system. This provides a clear

statement of configuration constraints to avoid exposure to risk and enables mechanisms to reason

about the severity and consequences of compromises after they occur.

Configuration Constraints. A guest can provide constraints on the service VMs that it is willing to

use. At present, a single constraint is allowed, as shown in Figure 4. The constraint_group

parameter provides an optional user-specified tag and may be appended to any line specifying a shared

service in the VM’s configuration. Xoar ensures that no two VMs specifying different constraint

groups ever share the same service VM.

Effectively, this constraint is a user-specified coloring that prevents sharing. By specifying a tag on

all of the devices of their hosted VMs, users can insist that they be placed in configurations where

they only share service VMs with guest VMs that they control.

Secure Audit. Xoar borrows techniques from past forensics systems such as Taser [18]. The

coarse-grained isolation and explicit dependencies provided by service VMs makes these auditing

approaches easier to apply. Whenever the platform performs a guest-related configuration change

(e.g., the creation, deletion, pausing, or unpausing of a VM), Xoar logs the resulting dependencies to

an off-host, append-only database over a secure channel. Currently, we use the temporal extension

for Postgres.

Two simple examples show the benefit of this approach. First, the top query in Figure 5 determines

which customers could be affected by the compromise of a service VM by enumerating VMs that

relied on that particular service VM at any point during the compromise. Second, providers frequently

roll out new versions of OS kernels and in the event that a vulnerability is discovered in a specific

Calls from within the service VM:

vm_snapshot ()

recoverybox_balloc (size)

VM configuration for restart policy:

restart_policy ([(timer | event), parameters])

Figure 6: Microreboot API

boot and

initialization

request

processing

rollback (triggered by restart policy)

vm_snapshot()

Newly

Created VM

Snapshot

Image

Copy-on-

write

recovery box recovery box

requests and
responses

rollback
activated

Figure 7: Rolling back to a known-good snapshot allows efficient microreboots of components.

release of a service VM after the fact, the audit log can be used to identify all guest VMs that were

serviced by it.

4.3 Staleness: Protect VMs in Time
The final feature of service VMs is a facility to defend the temporal attack surface, preserving the

freshness of execution state through the use of periodic restarts. This approach takes advantage of the

observation from work on microreboots and “crash-only software” [10] that it is generally easier to

reason about a program’s correctness at the start of execution rather than over long periods of time.

Microreboots. Virtual machines naturally support a notion of rebooting that can be used to reset them

to a known-good state. Further, many of the existing interfaces to control VM-based services already

contain logic to reestablish connections, used when migrating a running VM from one physical host

to another. There are two major challenges associated with microreboots. First, full system restarts

are slow and significantly reduce performance, especially of components on a data path such as device

drivers. Second, not all state associated with a service can be discarded since useful side-effects that

have occurred during that execution will also be lost.

Snapshot and Rollback. Instead of fully restarting a component, it is snapshotted just after it has

booted and been initialized, but before it has communicated with any other service or guest VM. The

service VM is modified to explicitly snapshot itself at the time that it is ready to service requests

(typically at the start of an event loop) using the API shown in Figure 6. Figure 7 illustrates the

snapshot/rollback cycle. By snapshotting before any requests are served over offered interfaces, we

ensure that the image is fresh. A complementary extension would be to measure and attest snapshot-

based images, possibly even preparing them as part of a distribution and avoiding the boot process

entirely.

We enable lightweight snapshots by using a hypervisor-based copy-on-write mechanism to trap and

preserve any pages that are about to be modified. When rolling back, only these pages and the virtual

CPU state need be restored, resulting in very fast restart times — in our implementation, between 4

and 25 ms, depending on the workload.

Restart Policy. While it is obvious when to take the snapshot of a component, it is less clear when

that component should be rolled back. Intuitively, it should be as frequently as possible. However,

even though rollbacks are quick, the more frequently a component is restarted, the less time it has

available to offer a useful service. Xoar specifies rollback policy in the service VM’s configuration file

and we currently offer two policies: notification-based and timer-based. Restart policy is associated

with the VM when it is instantiated and is tracked and enforced by the hypervisor.

In our notification-based policy, the hypervisor interposes on message notifications leaving the ser-

vice VM as an indication that a request transaction has completed, triggering a restart. For low-

frequency, synchronous communication channels (e.g., those that access XenStore), this method iso-

lates individual transactions and resets the service to a fresh state at the end of every processed

request. In other words, every single request is processed by a fresh version of the service VM.2

The overhead of imposing a restart on every request would be too high for higher-throughput, con-

current channels, such as NetBack and BlkBack. For these service VMs, the hypervisor provides a

periodic restart timer that triggers restarts at a configurable frequency.

Maintaining State. Frequent restarts suffer from the exact symptom that they seek to avoid: the

establishment of long-lived state. In rolling back a service VM, any state that it introduces is lost.

This makes it particularly hard to build services that depend on keeping in-memory state, such as

configuration registries, and services that need to track open connections.

We address this issue by providing service VMs with the ability to allocate a “recovery box” [3].

Originally proposed as a technique for high availability, this is a block of memory that persists across

restarts. Service VM code is modified to store any long-lived state in one of these allocations and to

check and restore from it immediately after a snapshot call. Memory allocated using this technique

is exempted from copy-on-write.

Maintaining state across restarts presents an obvious attack vector — a malicious user can attempt to

corrupt the state that is reloaded after every rollback to repeatedly trigger the exploit and compromise

the system. To address this, the service treats the recovery box as an untrusted input and audits its

contents after the rollback. Xen also tracks the memory pages in the allocation and forcibly marks all

virtual addresses associated with them as non-executable.

Driver VMs, like NetBack and BlkBack, automatically renegotiate both device state and frontend

connections in cases of failures or restarts, allowing them to discard all state at every restart. In

these performance-critical components, however, any downtime significantly affects the throughput

of guests. This downtime can be reduced by caching a very small amount of device and frontend

state in a recovery box. The desired balance between security and performance can be chosen, as

discussed in Section 7.2.

Components like XenStore, on the other hand, maintain a large amount of long-lived state for other

components in the system. In such cases, this state can be removed from the service VM altogether

and placed in a separate “state” VM that is accessible through a special-purpose interface. In Xoar,

only XenStore, because of its central role in the correctness and security of the system, is refactored in

this way (see Section 5.2). Only the processing and logic remain in the original service VM, making

it amenable to rollbacks.

2This mechanism leaves open the possibility that an exploited service VM might not send the event
that triggers the rollback. To cover this attack vector, the hypervisor maintains a watchdog timer
for each notification-based service VM. If a timer goes off, the VM is rolled back; if the restart is
triggered normally, the timer is reset.

User A’s VM
(HVM)

User B’s VM
(PV)

Qemu

XenStore

Xen

Interfaces Delegated-to

XenStore-
Logic

User A’s
Toolstack

XenStore-
State

Builder

NetBack
(eth 0)

BlkBack
(sda)

User B’s
Toolstack

NetBack
(eth 1)

BlkBack
(sdb)

Figure 8: Partitioned configuration: In the configuration above, users A and B use isolated

hardware and toolstacks and share interfaces only with XenStore and Xen itself.

Per-request rollbacks force the attacker to inject exploit code into the state and have it triggered by

another VM’s interaction with XenStore. However, in the absence of further exploits, access control

and guest ID authentication prevent the injection of such exploit code into sections of the state not

owned by the attacking guest (see Section 5.2). Thus, an attack originating from a guest VM through

XenStore requires an exploit of more than one service VM.

4.4 Deployment Scenarios
Public clouds, like Amazon Web Services, tightly pack many VMs on a single physical machine,

controlled by a single toolstack. Partitioning the platform into service VMs, which can be judiciously

restarted, limits the risks of sharing resources among potentially vulnerable and exposed VMs. Fur-

thermore, dynamically restarting service VMs allows for in-place upgrades, reducing the window of

exposure in the face of a newly discovered vulnerability. Finally, in the case of compromise, secure

audit facilities allow administrators to reason, after the fact, about exposures that may have taken

place.

Our design supports greater degrees of resource partitioning than this. Figure 8 shows a more con-

servative configuration, in which each user is assigned separate, dedicated hardware resources within

the physical host and a personal collection of service VMs to manage them. Users manage their own

service VMs and the device drivers using a private Toolstack with resource service VMs delegated

solely to it.

5. IMPLEMENTATION
This section explains how the design described in Section 4 was implemented on the Xen platform.

It begins with a brief discussion of how component boundaries were selected in fracturing the control

Component P Lifetime OS Parent Depends On Functionality

Bootstrapper Y Boot Up nanOS Xen -
Instantiate boot

service VMs

XenStore N Forever (R) miniOS Bootstrapper -
System configura-

tion registry

Console N Forever Linux Bootstrapper XenStore

Expose physical

console as virtual

consoles to VMs

Builder Y Forever (R) nanOS Bootstrapper XenStore
Instantiate non-

boot VMs

PCIBack Y Boot Up Linux Bootstrapper

XenStore

Builder

Console

Initialize hard-

ware and PCI

bus, pass through

PCI devices, and

expose virtual

PCI config space

NetBack N Forever (R) Linux PCIBack
XenStore

Console

Expose physical

network device as

virtual devices to

VMs

BlkBack N Forever (R) Linux PCIBack
XenStore

Console

Expose physical

block device as

virtual devices to

VMs

Toolstack N Forever (R) Linux Bootstrapper

XenStore

Builder

Console

Admin toolstack

to manage VMs

QemuVM N Guest VM miniOS Toolstack

XenStore

NetBack

BlkBack

Device emulation

for a single guest

VM

Table 1: Components of Xoar. The “P” column indicates if the component is privileged. An

“(R)” in the lifetime column indicates that the component can be restarted. Console is only

mentioned for the sake of completeness. Since enterprise deployments typically disable console

access, it is not part of the overall architecture.

VM and then describes implementation details and challenges faced during the development of Xoar.

5.1 Xoar Components
The division of service VMs in Xoar conforms to the design goals of Section 4; we reduce com-

ponents into minimal, loosely coupled units of functionality, while obeying the principle of least

privilege. As self-contained units, they have a low degree of sharing and inter-VM communication

(IVC), and can be restarted independently. Existing software and interfaces are reused to aid devel-

opment and ease future maintenance. Table 1 augments Figure 2 by describing the classes of service

VMs in our decomposition of Dom0. While it is not the only possible decomposition, it satisfies our

design goals without requiring an extensive re-engineering of Xen.

Virtualized devices mimic physical resources in an attempt to offer a familiar abstraction to guest

VMs, making them ideal service VMs. Despite the lack of toolstack support, Xen has architectural

support for driver VMs, reducing the development effort significantly. PCIBack virtualizes the phys-

ical PCI bus, while NetBack and BlkBack are driver VMs, exposing the required device backends

for guest VMs. Further division, like separating device setup from the data path, yields no isolation

benefits, since both components need to be shared simultaneously. This would also add a significant

amount of IVC, conflicting with our design goals, and would require extensive modifications. Simi-

larly, the serial controller is represented by a service VM that virtualizes the console for other VMs.

Further details about virtualizing these hardware devices are discussed in Section 5.3 and Section 5.4.

Different aspects of the VM creation process require differing sets of privileges; placing them in the

same service VM violates our goal of reducing privilege. These operations can largely be divided

into two groups — those that need access to the guest’s memory to set up the kernel, etc., and those

that require access to XenStore to write entries necessary for the guest. Breaking this functionality

apart along the lines of least privilege yields the Builder, a privileged service VM responsible for the

hypervisor and guest memory operations, and the Toolstack, a service VM containing the manage-

ment toolstack. While the Builder could be further divided into components for sub-operations, like

loading the kernel image, setting up the page tables, etc., these would all need to run at the same

privilege level and would incur high synchronization costs. The Builder responds to build requests

issued by the Toolstack via XenStore. Once building is complete, the Toolstack communicates with

XenStore to perform the rest of the configuration and setup process.

5.2 XenStore
Our refactoring of XenStore is the most significant implementation change that was applied to any

of the existing components in Xen (and took the largest amount of effort). We began by breaking

XenStore into two independent service VMs: XenStore-Logic, which contains the transactional logic

and connection management code, and XenStore-State, which contains the actual contents of the

store. This division allows restarts to be applied to request-handling code on a per-request basis,

ensuring that exploits are constrained in duration to a single request. XenStore-State is a simple

key-value store and is the only long-lived VM in Xoar.

Unfortunately, partitioning and per-request restarts are insufficient to ensure the security of XenStore.

As XenStore-Logic is responsible for enforcing access control based on permissions in the store

itself, a compromise of that VM may allow for arbitrary accesses to the contents of the store. We

addressed this problem with two techniques. First, access control checks are moved into a small

monitor module in XenStore-State; a compromise of XenStore-Logic is now limited to valid changes

according to existing permissions in the store. Second, we establish the authenticity of accesses

made by XenStore-Logic by having it declare the identity of the VM that it is about to service before

reading the actual request. This approach effectively drops privilege to that of a single VM before

exposing XenStore-Logic to any potentially malicious request, and makes the identity of the request

made to XenStore-State unforgeable. The monitor refuses any request to change the current VM until

the request has been completed, and an attempt to do so results in a restart of XenStore-Logic.

The monitor code could potentially be further disaggregated from XenStore-State and also restarted

on a per-request basis. Our current implementation requires an attacker to compromise both XenStore-

Logic and the monitor code in XenStore-State in succession, within the context of a single request,

in order to make an unauthorized access to the store. Decoupling the monitor from XenStore-State

would add limited extra benefit, for instance possibly easing static analysis of the two components,

and still allow a successful attacker to make arbitrary changes in the event of the two successive

compromises; therefore we have left the system is it stands.

5.3 PCI: A Shared Bus
PCIBack controls the PCI bus and manages interrupt routing for peripheral devices. Although driver

VMs have direct access to the peripherals themselves, the shared nature of the PCI configuration

space requires a single component to multiplex all accesses to it. This space is used during device

initialization, after which there is no further communication with PCIBack. We remove PCIBack

from the TCB entirely after boot by destroying it, reducing the number of shared components in the

system.

Hardware virtualization techniques like SR-IOV [28] allow the creation of virtualized devices, where

the multiplexing is performed in hardware, obviating the need for driver VMs. However, provisioning

new virtual devices on the fly requires a persistent service VM to assign interrupts and multiplex

accesses to the PCI configuration space. Ironically, although appearing to reduce the amount of

sharing in the system, such techniques may increase the number of shared, trusted components.

5.4 Driver VMs: NetBack and BlkBack
Driver VMs, like NetBack and BlkBack, use direct device assignment to directly access PCI periph-

erals like NICs and disk controllers, and rely on existing driver support in Linux to interface with the

hardware. Each NetBack or BlkBack virtualizes exactly one network or block controller, hosting the

relevant device driver and virtualized backend driver. The Toolstack links a driver VM delegated to it

to a guest VM by writing the appropriate frontend and backend XenStore entries during the creation

of the guest, after which the guest and backend communicate directly using shared memory rings,

without any further participation by XenStore.

Separating BlkBack from the Toolstack caused some problems as the existing management tools

mount disk-based VM images as loopback devices with blktap, for use by the backend driver. After

splitting BlkBack from the Toolstack, the disk images need to be created and mounted in BlkBack.

Therefore, in Xoar, BlkBack runs a lightweight daemon that proxies requests from the Toolstack.

5.5 Efficient Microreboots
As described in Section 4.3, our snapshot mechanism copies memory pages which are dirtied as

a service VM executes and restores the original contents of these pages during rollback, requiring

a page allocation and deallocation and two copy operations for every dirtied page. Since many of

the pages being modified are the same across several iterations, rather than deallocating the master

copies of these pages after rollback, we retain them across runs, obviating the need for allocation,

deallocation, and one copy operation when the same page is dirtied. However, this introduces a new

problem: if a page is dirtied just once, its copy will reside in memory forever. This could result in

memory being wasted storing copies of pages which are not actively required.

To address this concern, we introduced a “decay” value to the pages stored in the snapshot image.

When a page is first dirtied after a rollback, its decay value is incremented by two, towards a maxi-

mum value. On rollback, each page’s decay value is decremented. When this count reaches zero, the

page is released.

5.6 Deprivileging Administrative Tools
XenStore and the Console require Dom0-like privileges to forcibly map shared memory, since they

are required before the guest VM can set up its grant table mappings. To avoid this, Xoar’s Builder

creates grant table entries for this shared memory in each new VM, allowing these tools to use grant

tables and function without any special privileges.

The Builder assigns VM management privileges to each Toolstack for the VMs that it requests to be

built. A Toolstack can only manage these VMs, and an attempt to manage any others is blocked by the

hypervisor. Similarly, it can only use service VMs that have been delegated to it. An attempt to use an

undelegated service VM, for example a NetBack, for a new guest VM will fail. Restricting privileges

this way allows for the creation of several Toolstack instances that run simultaneously. Different

users, each with a private Toolstack, are able to partition their physical resources and manage their

own VMs, while still guaranteeing strong isolation from VMs belonging to other users.

5.7 Developing with Minimal OSes
Bootstrapper and Builder are built on top of nanOS, a small, single-threaded, lightweight kernel

explicitly designed to have the minimum functionality needed for VM creation. The small size and

simplicity of these components leave them well within the realm of static analysis techniques, which

could be used to verify their correctness. XenStore, on the other hand, demands more from its

operating environment, and so is built on top of miniOS, a richer OS distributed with Xen.

Determining the correct size of OS to use is hard, with a fundamental tension between functionality

and ease of use. Keeping nanOS so rigidly simple introduces a set of development challenges, es-

pecially in cases involving IVC. However, since these components have such high privilege, we felt

that the improved security gained from reduced complexity is a worthwhile trade-off.

5.8 Implicit Assumptions about Dom0
The design of Xen does not mandate that all service components live in Dom0, however several

components, including the hypervisor, implicitly hard-code the assumption that they do. A panoply

of access control checks compare the values of domain IDs to the integer literal ’0’, the ID for Dom0.

Many tools assume that they are running co-located with the driver backends and various paths in

XenStore are hard-coded to be under Dom0’s tree The toolstack expects to be able to manipulate the

files that contain VM disk images, which is solved by proxying requests, as discussed in Section 5.4.

The hypervisor assumes Dom0 has control of the hardware and configures signal delivery and MMIO

and I/O-port privileges for access to the console and peripherals to Dom0. In Xoar, these need to be

mapped to the correct VMs, with Console requiring the signals and I/O-port access for the console

and PCIBack requiring the MMIO and remaining I/O-port privileges, along with access to the PCI

bus.

6. SECURITY EVALUATION
Systems security is notoriously challenging to evaluate, and Xoar’s proves no different. In an attempt

to demonstrate the improvement to the state of security for commodity hypervisors, this section will

consider a number of factors. First, we will evaluate the reduction in the size of the trusted computing

base; this is an approach that we do not feel is particularly indicative of the security of a system, but

has been used by a considerable amount of previous work and does provide some insight into the

complexity of the system as a whole. Second, we consider how the attack surface presented by

the control VM changes in terms of isolation, sharing, and per-component privilege in an effort to

evaluate the exposure to risk in Xoar compared to other systems. Finally, we consider how well Xoar

handles the existing published vulnerabilities first described in Section 2.

Much of this evaluation is necessarily qualitative: while we have taken efforts to evaluate against

published vulnerabilities, virtualization on modern servers is still a sufficiently new technology with

few disclosed vulnerabilities. Our sense is that these vulnerabilities may not be representative of the

full range of potential attacks.

In evaluating Xoar’s security, we attempt to characterize it from an attacker’s perspective. One no-

table feature of Xoar is that in order for an adversary to violate our security claim, more than one

service VM must have a vulnerability, and a successful exploit must be able to perform a stepping-

stone attack. We will discuss why this is true, and characterize the nature of attacks that are still

possible.

6.1 Reduced TCB
The Bootstrapper, PCIBack, and Builder service VMs are the most privileged components, with the

ability to arbitrarily modify guest memory and control and assign the underlying hardware. These

privileges necessarily make them part of the TCB, as a compromise of any one of these components

would render the entire system vulnerable. Both Bootstrapper and PCIBack are destroyed after sys-

tem initialization is complete, effectively leaving Builder as the only service VM in the TCB. As a

result, the TCB is reduced from Linux’s 7.6 million lines of code to Builder’s 13,500 lines of code,

both on top of the hypervisor’s 280,000 lines of code.3

6.2 Attack Surface
Monolithic virtualization platforms like Xen execute service components in a single trust domain,

with every component running at the highest privilege level. As a result, the security of the entire

3All lines of code were measured using David Wheeler’s SLOCCount from
http://www.dwheeler.com/sloccount/

Permission Bootstrapper PCIBack Builder Toolstack BlkBack NetBack

Arbitrarily

X Xaccess

memory

Access and

Xvirtualize

PCI devices

Create VMs X X

Manage VMs X X X

Manage

X Xassigned

devices

Table 2: Functionality available to the service VMs in Xoar. Components with access to no

privileged hypercalls are not shown. In Xen, Dom0 possesses all of these functionalities.

Component Shared Interfaces

XenStore-Logic

XenStore-State, Console,

Builder, PCIBack,

NetBack, BlkBack, Guest

XenStore-State XenStore-Logic

Console XenStore-Logic

Builder XenStore-Logic

PCIBack XenStore-Logic, NetBack, BlkBack

NetBack XenStore-Logic, PCIBack, Guest

BlkBack XenStore-Logic, PCIBack, Guest

Toolstack XenStore-Logic

Guest VM XenStore-Logic, NetBack, BlkBack

Table 3: Interfaces shared between service VMs

system is defined by that of the weakest component, and a compromise of any component gives an

attacker full control of the system.

Disaggregating service components into their own VMs not only provides strong isolation bound-

aries, it also allows privileges to be assigned on a per-component basis, reducing the effect a compro-

mised service VM has on the entire system. Table 2 shows the privileges granted to each service VM,

which corresponds to the amount of access that an attacker would have on successfully exploiting it.

Attacks originating from guest VMs can exploit vulnerabilities in the interfaces to NetBack, BlkBack,

or XenStore (see Table 3). An attacker breaking into a driver VM gains access only to the degree that

other VMs trust that device. Exploiting NetBack might allow for intercepting another VM’s network

traffic, but not access to arbitrary regions of its memory. On hosts with enough hardware, resources

can be partitioned so that no two guests share a driver VM.

Where components reuse the same code, a single vulnerability could be sufficient to compromise

them all. Service VMs like NetBack, BlkBack, Console, and Toolstack run the same core Linux ker-

nel, with specific driver modules loaded only in the relevant component. As a result, vulnerabilities

in the exposed interfaces are local to the associated service VM, but vulnerabilities in the underlying

framework and libraries may be present in multiple components. For better code diversity, service

VMs could use a combination of Linux, FreeBSD, OpenSolaris, and other suitable OSes.

Highly privileged components like the Builder have very narrow interfaces and cannot be compro-

mised without exploiting vulnerabilities in multiple components, at least one of which is XenStore.

Along with the central role it plays in state maintenance and synchronization, this access to Builder

makes XenStore an attractive target. Compromising XenStore-Logic may allow an attacking guest

to store exploit code in XenStore-State, which, when restoring state after a restart, re-compromises

XenStore-Logic. The monitoring code described in Section 5.2, however, prevents this malicious

state from being restored when serving requests from any other guest VM, ensuring that they interact

Component Arbitrary Code Execution DoS File System Access

Hypervisor 0 / 1 0 / 1 0 / 0

Device Emulation 8 / 8 3 / 3 3 / 3

Virtualized Drivers 1 / 1 1 / 1 0 / 0

XenStore 0 / 0 1 / 1 0 / 0

Toolstack 1 / 1 2 / 2 1 / 1

Table 4: Vulnerabilities mitigated in Xoar. The numbers represent total mitigated over total

identified.

with a clean copy of XenStore.

6.3 Vulnerability Mitigation
With a majority of the disclosed vulnerabilities against Xen involving privilege escalation against

components in Dom0, Xoar proves to be successful in containing all but two of them. Table 4

taxonomizes the vulnerabilities discussed in Section 2 based on the vulnerable component and the

type of vulnerability, along with the number that are successfully mitigated in Xoar.

The 14 device emulation attacks are completely mitigated, as the device emulation service VM has no

rights over any VM except the one the attacker came from. The two attacks on the virtualized device

layer and the three attacks against the toolstack would only affect those VMs that shared the same

BlkBack, NetBack, and Toolstack components. The vulnerability present in XenStore did not exist

in our custom version. Since Xoar does not modify the hypervisor, the two hypervisor vulnerabilities

remain equally exploitable.

One of the vulnerabilities in the virtualized drivers is against the block device interface and causes an

infinite loop which results in a denial of service. Periodically restarting BlkBack forces the attacker

to continuously recompromise the system. Since requests from different guests are serviced on every

restart, the device would continue functioning with low bandwidth, until a patch could be applied to

prevent further compromises.

7. PERFORMANCE EVALUATION
The performance of Xoar is evaluated against a stock Xen Dom0 in terms of memory overhead,

I/O throughput, and overall system performance. Each service VM in Xoar runs with a single vir-

tual CPU; in stock Xen Dom0 runs with 2 virtual CPUs, the configuration used in the commercial

XenServer [12] platform. All figures are the average of three runs, with 95% confidence intervals

shown where appropriate.

Our test system was a Dell Precision T3500 server, with a quad-core 2.67 GHz Intel Xeon W3520

processor, 4 GB of RAM, a Tigon 3 Gigabit Ethernet card, and an Intel 82801JIR SATA controller

with a Western Digital WD3200AAKS-75L9A0 320 GB 7200 RPM disk. VMX, EPT, and IOMMU

virtualization are enabled. We use Xen 4.1.0 and Linux 2.6.314 pvops kernels for the tests. Identical

guests running an Ubuntu 10.04 system, configured with two VCPUs, 1 GB of RAM and a 15 GB

virtual disk are used on both systems. For network tests, the system is connected directly to another

system with an Intel 82567LF-2 Gigabit network controller.

7.1 Memory Overhead
Table 5 shows the memory requirements of each of the components in Xoar. Systems with multiple

network or disk controllers can have several instances of NetBack and BlkBack. Also, since users can

select the service VMs to run, there is no single figure for total memory consumption. In commer-

cial hosting solutions, console access is largely absent rendering the Console redundant. Similarly,

PCIBack can be destroyed after boot. As a result, the memory requirements range from 512 MB to

4Hardware issues forced us to use a 2.6.32 kernel for some of the components.

Component Memory Component Memory

XenStore-Logic 32 MB XenStore-State 32 MB

Console 128 MB PCIBack 256 MB

NetBack 128 MB BlkBack 128 MB

Builder 64 MB Toolstack 128 MB

Table 5: Memory requirements of individual components

896 MB, assuming a single network and block controller, representing a saving of 30% to an over-

head of 20% on the default 750 MB Dom0 configuration used by XenServer. All performance tests

compare a complete configuration of Xoar with a standard Dom0 Xen configuration.

7.2 I/O performance

1Kx50K 20Kx50K 20Kx100K 20Kx100Kx100

O
p

e
ra

ti
o

n
s
 /

 S
e

c
o

n
d

0

5000

10000

15000

Dom0 Xoar

Figure 9: Disk performance using Postmark (higher is better). The x-axis denotes (files x trans-

actions x subdirectories).

Disk performance is tested using Postmark, with VMs’ virtual disks backed by files on a local disk.

Figure 9 shows the results of these tests with different configuration parameters.

Network performance is tested by fetching a 512 MB and a 2 GB file across a gigabit LAN using

wget, and writing it either to disk, or to /dev/null (to eliminate performance artifacts due to disk

performance). Figure 10 shows these results.

Overall, disk throughput is more or less unchanged, and network throughput is down by 1–2.5%. The

combined throughput of data coming from the network onto the disk increases by 6.5%; we believe

this is caused by the performance isolation of running the disk and network drivers in separate VMs.

To measure the effect of microrebooting driver VMs, we ran the 2 GB wget to /dev/null while

restarting NetBack at intervals between 1 and 10 seconds. Two different optimizations for fast mi-

croreboots are shown.

In the first (marked as “slow” in Figure 11), the device hardware state is left untouched during reboots;

in the second (“fast”), some configuration data that would normally be renegotiated via XenStore is

persisted. In “slow” restarts the device downtime is around 260 ms, measuring from when the device

is suspended to when it responds to network traffic again. The optimizations used in the “fast” restart

reduce this downtime to around 140 ms.

/dev/null (512MB) Disk (512MB) /dev/null (2GB) Disk (2GB)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

0

25

50

75

100

125

Dom0 Xoar

Figure 10: Network performance with wget (higher is better)

Resetting every 10 seconds causes an 8% drop in throughput, as wget’s TCP connections respond

to the breaks in connectivity. Reducing the interval to one second gives a 58% drop. Increasing it

beyond 10 seconds makes very little difference to throughput. The faster recovery gives a noticeable

benefit for very frequent reboots but is worth less than 1% for 10-second reboots.

7.3 Real-world Benchmarks
Figure 12 compares the time taken to build a Linux kernel, both in stock Xen and Xoar, off a local

ext3 volume as well as an NFS mount. The overhead added by Xoar is much less than 1%.

The Apache Benchmark is used to gauge the performance of an Apache web server serving a 10 KB

static webpage 100,000 times to five simultaneous clients. Figure 13 shows the results of this test

against Dom0, Xoar, and Xoar with network driver restarts at 10, 5, and 1 second intervals. Per-

formance decreases non-uniformly with the frequency of the restarts: an increase in restart interval

from 5 to 10 seconds yields barely any performance improvements, while changing the interval from

5 seconds to 1 second introduces a significant performance loss.

Dropped packets and network timeouts cause a small number of requests to experience very long

completion times — for example, for Dom0 and Xoar, the longest packet took only 8–9 ms, but with

restarts, the values range from 3000 ms (at 5 and 10 seconds) to 7000 ms (at 1 second). As a result,

the longest request interval is not shown in the figure.

Overall, the overhead of disaggregation is quite low. This is largely because driver VMs do not

lengthen the data path between guests and the hardware: the guest VM communicates with NetBack

or BlkBack, which drives the hardware. While the overhead of driver restarts is noticeable, as inter-

mittent outages lead to TCP backoff, it can be tuned by the administrator to best match the desired

combination of security and performance.

8. RELATED WORK
With the widespread use of VMs, the security of hypervisors has been studied extensively and several

attempts have been made to address the problem of securing the TCB. This section looks at some of

these techniques in the context of our functional requirements.

Restart Interval (s)

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

20

30

40

50

60

70

80

90

100

baseline

slow (260ms)

fast (140ms)

Figure 11: wget throughput while restarting NetBack at different time intervals

Build a Smaller Hypervisor. SecVisor [38] and BitVisor [40] are examples of tiny hypervisors,

built with TCB size as a primary concern, that use the interposition capabilities of hypervisors to

retrofit security features for commodity OSes. While significantly reducing the TCB of the system,

they do not share the multi-tenancy goals of commodity hypervisors and are unsuitable for such

environments.

Microkernel-based architectures like KeyKOS [20] and EROS [39], its x86-based successor, are

motivated similarly to Xoar and allow mutually untrusting users to securely share a system. Our

Builder closely resembles the factory in KeyKOS. While multiple, isolated, independently adminis-

tered UNIX instances, rather like VMs, can be hosted on EROS, this requires modifications to the

environment and arbitrary OSes cannot be hosted. More recently, NOVA [42] uses a similar ar-

chitecture and explicitly partitions the TCB into several user-level processes within the hypervisor.

Although capable of running multiple unmodified OSes concurrently, the removal of the control VM

and requirement for NOVA-specific drivers sacrifice hardware support for TCB size. Also, it is far

from complete: it cannot run Windows guests and has limited toolstack support.

NoHype [23] advocates removing the hypervisor altogether, using static partitioning of CPUs, mem-

ory, and peripherals among VMs. This would allow a host to be shared by multiple operating systems,

but with none of the other benefits of virtualization. In particular, the virtualization layer could no

longer be used for interposition, which is necessary for live migration [13], memory sharing and

compression [19, 32], and security enhancements [11, 30, 46, 16].

Harden the Components of the TCB. The security of individual components of the TCB can be

improved using a combination of improved code quality and access control checks to restrict the

privileges of these components. Xen’s XAPI toolstack is written in OCaml and benefits from the

robustness that a statically typed, functional language provides [37]. Xen and Linux both have mech-

anisms to enforce fine-grained security policies [31, 36]. While useful, these techniques do not

address the underlying concern about the size of the TCB.

Split Up the TCB, Reduce the Privilege of Each Part. Murray et al. [33] removed Dom0 userspace

from the TCB by moving the VM builder into a separate privileged VM. While a step in the right

S
e

c
o

n
d

s

0

50

100

150

200

250

300

350

400

450

500

Dom0 (local)

Xoar (local)

Dom0 (nfs)

Xoar (nfs)

Restarts (10s)

Restarts (5s)

Figure 12: Linux kernel build run on Dom0 and Xoar, locally, over NFS and over NFS with

NetBack restarts.

Total Time (s) Throughput (req/s) Latency (s) Transfer Rate (MB/s)

R
e

la
ti
v
e

 s
c
o

re
 t

o
 D

o
m

0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3
0

.9
5

3
2

3
0

.8
2

1
.5

5

3
6

.0
4

3
1

.4
3

3
1

8
2

.0
3

1
.5

7

3
5

.4
9

4
4

.0
0

2
2

7
3

.3
9

2
.2

0

2
5

.3
6

4
5

.2
8

2
2

0
8

.7
1

2
.2

6

2
4

.6
4

1
1

4
.3

9

8
8

3
.1

8

5
.7

2

9
.8

5

Dom0 Xoar Restarts (10s) Restarts (5s) Restarts (1s)

Figure 13: Apache Benchmark run on Dom0, Xoar, and Xoar with network driver restarts at

10s, 5s, and 1s.

direction, it does not provide functional parity with Xen or remove the Dom0 kernel from the TCB,

leaving the system vulnerable to attacks on exposed interfaces, such as network drivers.

Driver domains [17] allow device drivers to be hosted in dedicated VMs rather than Dom0, resulting

in better driver isolation. Qubes-OS [35] uses driver domains in a single-user environment, but does

not otherwise break up Dom0. Stub domains [44] isolate the Qemu device model for improved

performance and isolation. Xoar builds on these ideas and extends them to cover the entire control

VM.

9. DISCUSSION AND FUTURE WORK
This idea of partitioning a TCB is hardly new, with software partitioning having been explored in

a variety of contexts before. Microkernels remain largely in the domain of embedded devices with

relatively small and focused development teams (e.g., [26]), and while attempts at application-level

partitioning have demonstrated benefits in terms of securing sensitive data, they have also demon-

strated challenges in implementation and concerns about maintenance [7, 9, 24, 34], primarily due to

the mutability of application interfaces.

While fracturing the largely independent, shared services that run in the control VM above the hy-

pervisor, we observe that these concerns do not apply to nearly the same degree; typically the com-

ponents are drivers or application code exposing their dominant interfaces either to hardware or to

dependent guests. Isolating such services into their own VMs was a surprisingly natural fit.

While it is tempting to attribute this to a general property of virtualization, we also think that it

was particularly applicable to the architecture of Xen. Although implemented as a monolithic TCB,

several of the components were designed to support further compartmentalization, with clear, narrow

communication interfaces.

We believe the same is applicable to Hyper-V, which has a similar architecture to Xen. In contrast,

KVM [25] converts the Linux kernel itself into a hypervisor, with the entire toolstack hosted in a

Qemu process. Due to the tight coupling, we believe that disaggregating KVM this aggressively

would be extremely hard, more akin to converting Linux into a microkernel.

9.1 Lessons
In the early design of the system our overall rule was to take a practical approach to hardening the

hypervisor. As usual, with the hindsight of having built the system, some more specific guidelines

are clear. We present them here as “lessons” and hope that they may be applied earlier in the design

process of future systems.

Don’t break functionality. From the outset, the work described in this paper has been intended to

be applied upstream to the open source Xen project. We believe that for VM security improvements

to be deployed broadly, they must not sacrifice the set of functionality that has made these systems

successful, and would not expect a warm reception for our work from the maintainers of the system

if we were to propose that facilities such as CPU overcommit simply didn’t make sense in our design.

This constraint places enormous limitations on what we are able to do in terms of hardening the

system, but it also reduces the major argument against accepting new security enhancements.

Don’t break maintainability. Just as the users of a virtualization platform will balk if enhancing

security costs functionality, developers will push back on approaches to hardening a system that

require additional effort from them. For this reason, our approach to hardening the hypervisor has

been largely a structural one: individual service VMs already existed as independent applications in

the monolithic control VM and so the large, initial portion of our work was simply to break each of

these applications out into its own virtual machine. Source changes in this effort largely improved

the existing source’s readability and maintainability by removing hard-coded values and otherwise

generalizing interfaces.

By initially breaking the existing components of the control VM out into their own virtual machines,

we also made it much easier for new, alternate versions of these components to be written and main-

tained as drop-in replacements: our current implementation uses largely unchanged source for most

of the service VM code, but then chooses to completely reimplement XenStore. The original version

of XenStore still works in Xoar, but the new one can be dropped in to strengthen a critical, trusted

component of the system.

There isn’t always a single best interface. The isolation of components into service VMs was

achieved through multiple implementations: some service VMs use a complete Linux install, some a

stripped-down “miniOS” UNIX-like environment, and some the even smaller “nanOS”, effectively a

library for building small single-purpose VMs designed to be amenable to static analysis.

Preserving application state across microreboots has a similar diversity of implementation: driver

VMs take advantage of a recovery-box-like API, while for the reimplementation of XenStore it be-

came more sensible to split the component into two VMs, effectively building our own long-lived

recovery box component.

Our experience in building the system is that while we might have built simpler and more elegant

versions of each of the individual components, we probably couldn’t have used fewer of them without

making the system more difficult to maintain.

9.2 Future Work
The mechanism of rebooting components that automatically renegotiate existing connections allow

many parts of the virtualization platform to be upgraded in place. An old component can be shut down

gracefully, and a new, upgraded one brought up in its place with a minor modification of XenStore

keys. Unfortunately, these are not applicable to long-lived components with state like XenStore and

the hypervisor itself. XenStore could potentially be restarted by persisting its state to disk. Restarting

Xen under executing VMs, however, is more challenging. We would like to explore techniques like

those in ReHype [29], but using controlled reboots to safely replace Xen, allowing the complete

virtualization platform to be upgraded and restarted without disturbing the hosted VMs.

Although the overall design allows for it, our current implementation does not include cross-host

migration of VMs. We are in the process of implementing a new service VM that contains the live VM

migration toolset to transmit VMs over the network. While this component is not currently complete,

it has begun to demonstrate an additional benefit of disaggregation: the new implementation strikes

a balance between the implementation of a feature that requires considerable privilege to map and

monitor changes to a VM’s memory in the control VM, and the proposal to completely internalize

migration within the guest itself [13]. Xoar’s live migration tool allows the guest to delegate access

to map and monitor changes to its memory to a trusted VM, and allows that VM to run, much

like the QemuVM, for as long as is necessary. We believe that this technique will further apply to

other proposals for interposition-based services, such as memory sharing, compression, and virus

scanning.

10. CONCLUSION
Advances in virtualization have spurred demand for highly-utilized, low-cost centralized hosting of

systems in the cloud. The virtualization layer, while designed to be small and secure, has grown out

of a need to support features desired by enterprises.

Xoar is an architectural change to the virtualization platform that looks at retrofitting microkernel-like

isolation properties to the Xen hypervisor without sacrificing any existing functionality. It divides the

control VM into a set of least-privilege service VMs, which not only makes any sharing dependencies

between components explicit, but also allows microreboots to reduce the temporal attack surface of

components in the system. We have achieved a significant reduction in the size of the TCB, and

address a substantial percentage of the known classes of attacks against Xen, while maintaining

feature parity and incurring very little performance overhead.

11. ACKNOWLEDGMENTS
We would like to thank our shepherd, Bryan Ford, the anonymous reviewers, Steve Hand, Derek

Murray, Steve Gribble, Keir Fraser, David Lie, and the members of the systems research groups at

the University of British Columbia and at the University of Cambridge for their suggestions and feed-

back. This work was partially supported through funding from the NSERC Internetworked Systems

Security Network (ISSNet) and from the Communications Security Establishment Canada (CSEC).

12. REFERENCES
[1] Department of Defense Trusted Computer System Evaluation Criteria. DoD 5200.28-STD.

U.S. Department of Defense, Dec. 1985.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan. FAWN:

A fast array of wimpy nodes. In Proc. 22nd ACM SOSP, pages 1–14, Oct. 2009.

[3] M. Baker and M. Sullivan. The recovery box: Using fast recovery to provide high availability

in the UNIX environment. In Proc. USENIX Summer Conference, pages 31–43, June 1992.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In Proc. 19th ACM SOSP, pages 164–177, Oct.

2003.

[5] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. IEEE Computer,

40:33–37, December 2007.

[6] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc. USENIX ATC, pages

41–46, Apr. 2005.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: splitting applications into

reduced-privilege compartments. In Proc. 5th USENIX NSDI, pages 309–322, Apr. 2008.

[8] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proc. 15th ACM

SOSP, pages 1–11, Dec. 1995.

[9] D. Brumley and D. Song. Privtrans: automatically partitioning programs for privilege

separation. In Proc. 13th USENIX Security Symposium, pages 57–72, Aug. 2004.

[10] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot — a technique for

cheap recovery. In Proc. 6th USENIX OSDI, pages 31–44, Dec. 2004.

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,

J. Dwoskin, and D. R. Ports. Overshadow: a virtualization-based approach to retrofitting

protection in commodity operating systems. In Proc. 13th ASPLOS, pages 2–13, Mar. 2008.

[12] Citrix Systems, Inc. Citrix XenServer 5.6 Admininistrator’s Guide. June 2010.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live

migration of virtual machines. In Proc. 2nd USENIX NSDI, pages 273–286, May 2005.

[14] P. Colp. [xen-devel] [announce] xen ocaml tools.

http://lists.xensource.com/archives/html/xen-devel/2009-02/

msg00229.html.

[15] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus: high

availability via asynchronous virtual machine replication. In Proc. 5th USENIX NSDI, pages

161–174, Apr. 2008.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware analysis via hardware

virtualization extensions. In Proc. 15th ACM CCS, pages 51–62, Oct. 2008.

[17] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. Safe hardware

access with the Xen virtual machine monitor. In Proc. 1st OASIS, Oct. 2004.

[18] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The Taser intrusion recovery system. In

Proc. 20th ACM SOSP, pages 163–176, Oct. 2005.

[19] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M. Voelker, and

A. Vahdat. Difference engine: harnessing memory redundancy in virtual machines. In Proc.

8th Usenix OSDI, pages 85–93, Oct. 2008.

[20] N. Hardy. The KeyKOS architecture. Operating Systems Review, 19(4):8–25, October 1985.

[21] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. Reducing TCB size by using untrusted

components: small kernels versus virtual-machine monitors. In Proc. 11th ACM SIGOPS EW,

Sept. 2004.

[22] K. Kappel, A. Velte, and T. Velte. Microsoft Virtualization with Hyper-V. McGraw-Hill, 1st

edition, 2010.

[23] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype: virtualized cloud infrastructure

without the virtualization. In Proc. 37th ACM ISCA, pages 350–361, June 2010.

[24] D. Kilpatrick. Privman: A library for partitioning applications. In Proc. USENIX ATC, pages

273–284, June 2003.

[25] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual machine

monitor. In Proc. Linux Symposium, pages 225–230, July 2007.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: formal

verification of an OS kernel. In Proc. 22nd ACM SOSP, pages 207–220, Oct. 2009.

[27] G. Kroah-Hartman. udev: A userspace implementation of devfs. In Proc. Linux Symposium,

pages 263–271, July 2003.

[28] P. Kutch. PCI-SIG SR-IOV primer: An introduction to SR-IOV technology. Application note

321211-002, Intel Corporation, Jan. 2011.

[29] M. Le and Y. Tamir. ReHype: Enabling VM survival across hypervisor failures. In Proc. 7th

ACM VEE, pages 63–74, Mar. 2011.

[30] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for identifying covertly executing

binaries. In Proc. 17th USENIX Security Symposium, pages 243–258, July 2008.

[31] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux

operating system. In Proc. USENIX ATC, pages 29–42, June 2001.

[32] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman. Satori: Enlightened page sharing. In

Proc. USENIX ATC, pages 1–14, June 2009.

[33] D. G. Murray, G. Milos, and S. Hand. Improving Xen security through disaggregation. In Proc.

4th ACM VEE, pages 151–160, Mar. 2008.

[34] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In Proc. 12th USENIX

Security Symposium, pages 231–242, Aug. 2003.

[35] J. Rutkowska and R. Wojtczuk. Qubes OS Architecture. Version 0.3. Jan. 2010.

http://qubes-os.org/.

[36] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L. Griffin, and L. van Doorn.

Building a MAC-based security architecture for the Xen open-source hypervisor. In Proc. 21st

ACSAC, pages 276–285, Dec. 2005.

[37] D. Scott, R. Sharp, T. Gazagnaire, and A. Madhavapeddy. Using functional frogramming

within an industrial product group: perspectives and perceptions. In Proc. 15th ICFP, pages

87–92, Sept. 2010.

[38] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor to provide lifetime

kernel code integrity for commodity OSes. In Proc. 21st ACM SOSP, pages 335–350, Oct.

2007.

[39] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system. In Proc. 17th ACM

SOSP, pages 170–185, Dec. 1999.

[40] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano,

K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. BitVisor: a thin

hypervisor for enforcing I/O device security. In Proc. 5th ACM VEE, pages 121–130, Mar.

2009.

[41] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask

security architecture: System support for diverse security policies. In Proc. 8th USENIX

Security Symposium, pages 123–139, Aug. 1999.

[42] U. Steinberg and B. Kauer. NOVA: a microhypervisor-based secure virtualization architecture.

In Proc. 5th EuroSys, pages 209–222, Apr. 2010.

[43] A. S. Tanenbaum, J. N. Herder, and H. Bos. Can we make operating systems reliable and

secure? IEEE Computer, 39(5):44–51, May 2006.

[44] S. Thibault and T. Deegan. Improving performance by embedding HPC applications in

lightweight Xen domains. In Proc. 2nd HPCVIRT, Mar. 2008.

[45] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency of a

database server. In Proc. ACM SIGMOD, pages 231–242, June 2010.

[46] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with lightweight hook

protection. In Proc. 16th ACM CCS, pages 545–554, Nov. 2009.

[47] J. Wilkes, J. Mogul, and J. Suermondt. Utilification. In Proc. 11th ACM SIGOPS EW, Sept.

2004.

