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ABSTRACT
Ensuring the freshness of client data is a fundamental problem for applications that rely on cloud
infrastructure to store data and mediate sharing. Thialfi is a notification service developed at Google
to simplify this task. Thialfi supports applications written in multiple programming languages and
running on multiple platforms, e.g., browsers, phones, and desktops. Applications register their
interest in a set of shared objects and receive notifications when those objects change. Thialfi servers
run in multiple Google data centers for availability and replicate their state asynchronously. Thialfi’s
approach to recovery emphasizes simplicity: all server state is soft, and clients drive recovery and
assist in replication. A principal goal of our design is to provide a straightforward API and good
semantics despite a variety of failures, including server crashes, communication failures, storage
unavailability, and data center failures.

Evaluation of live deployments confirms that Thialfi is scalable, efficient, and robust. In production
use, Thialfi has scaled to millions of users and delivers notifications with an average delay of less
than one second.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distributed Systems; D.4.5 [Operating Systems]:
Reliability

General Terms
Distributed Systems, Scalability, Reliability, Performance

1. INTRODUCTION
Many Internet-scale applications are structured around data shared between multiple users, their de-
vices, and cloud infrastructure. Client applications maintain a local cache of their data that must be
kept fresh. For example, if a user changes the time of a meeting on a calendar, that change should be
quickly reflected on the devices of all attendees. Such scenarios arise frequently at Google. Although
infrastructure services provide reliable storage, there is currently no general-purpose mechanism to
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notify clients that shared data has changed. In practice, many applications periodically poll to detect
changes, which results in lengthy delays or significant server load. Other applications develop custom
notification systems, but these have proven difficult to generalize and cumbersome to maintain.

This paper presents Thialfi, a highly scalable notification system developed at Google for user-facing
applications with hundreds of millions of users and billions of objects. Thialfi provides sub-second
notification delivery in the common case and clear semantics despite failures, even of entire data
centers. Thialfi supports applications written in a variety of languages (C++, Java, JavaScript) and
running on a diverse set of platforms such as web browsers, mobile phones, and desktops. To achieve
reliability, Thialfi relies on clients to drive recovery operations, avoiding the need for hard state at the
server, and our API is structured so that error handling is incorporated into the normal operation of
the application.

Thialfi models shared data as versioned objects, which are stored at a data center and cached at clients.
Clients register with Thialfi to be notified when an object changes, and the application’s servers notify
Thialfi when updates occur. Thialfi propagates notifications to registered clients, which synchronize
their data with application servers. Crucially, Thialfi delivers only the latest version number to clients,
not application data, which simplifies our design and promotes scalability.

Thialfi’s implementation consists of a library embedded in client applications and two types of servers
that run in Google data centers. Matchers are partitioned by object and receive and forward notifi-
cations; Registrars are partitioned by client and manage client registration and presence state. The
client library communicates with the servers over a variety of application-specific channels; Thialfi
protocols provide end-to-end reliability despite channel losses or message reordering. Finally, a best-
effort replication protocol runs between Thialfi data centers, and clients correct out-of-date servers
during migration.

A principal feature of Thialfi’s design is reliability in the presence of a wide variety of faults. The
system ensures that clients eventually learn of the latest version of each registered object, even if
the clients were unreachable at the time the update occurred. At large scale, ensuring even eventual
delivery is challenging—Thialfi is designed to operate at the scale of hundreds of millions of clients,
billions of objects, and hundreds of thousands of changes per second. Since applications are repli-
cated across data centers for reliability, notifications may need to be routed over multiple unreliable
communication channels to reach all clients. During propagation, a client may become unavailable
or change its server affinity. Clients may be offline. Servers, storage systems, or even entire data
centers may become temporarily unavailable. Thialfi handles these issues internally, freeing appli-
cation developers from the need to cope with them as special cases. Indeed, Thialfi remains correct
even when all server state is discarded. In our API, all failures manifest as signals that objects or
registrations have become stale and should be refreshed, and this process reconstructs state at the
server if necessary.

Like many infrastructure services, Thialfi is designed for operational simplicity: the same aspects of
our design that provide reliability (e.g., tolerating data center failures) also make the system easier to
run in production. Our techniques emphasize simplicity but do not provide perfect availability. While
Thialfi remains correct, recovering from some failures results in partial unavailability, and we discuss
these scenarios in our design.

Thialfi is a production service that is in active use by millions of people running a diverse set of
Google’s applications. We focus on two: Chrome and Contacts. These show the diversity of Thialfi
usage, which includes desktop applications synchronizing data with the cloud (Chrome) as well as
web/mobile applications sharing data between devices (Contacts). In both cases, Thialfi has simpli-
fied application design and improved efficiency substantially.

Further evaluation of Thialfi confirms its scalability, efficiency, and robustness. In production use,
Thialfi has scaled to millions of users. Load testing shows that Thialfi’s resource consumption scales
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Figure 1: An abstraction for a client notification service.
directly with usage. Injecting failures shows that the cost of recovery is modest; despite the failure
of an entire data center, Thialfi can rapidly migrate clients to remaining data centers with limited
over-provisioning.

To summarize, we make the following contributions:
• We provide a system robust to the full and partial failures common to infrastructure services.

Thialfi is one of the first systems to demonstrate robustness to the complete failure of a data center
and to the partial unavailability of infrastructure storage.
• Our design provides reliability at Internet scale without hard server state. Thialfi ensures that

clients eventually learn the latest versions of registered objects even if all server state is dropped.
• Thialfi’s API unifies error recovery with ordinary operation. No separate error-handling code paths

are required, greatly simplifying integration and reasoning about correctness.
• We integrate Thialfi with several Google applications and demonstrate the performance, scalabil-

ity, and robustness of our design for millions of users and thousands of notifications per second.

2. MOTIVATION AND REQUIREMENTS
This section describes an abstraction for a notification service with requirements drawn from our
experience at Google. Figure 1 shows the abstraction. Since Internet applications are separated into
server and client components, the service includes both an infrastructure component and a client
library. At the client, developers program against the library’s API and make updates that modify
shared data. At the server, applications publish notifications, which the service routes to appropriate
clients. The remainder of this section describes how we arrived at this abstraction.

2.1 A Case for a Notification Service
Applications that share data among users and devices have a common need for notifications when
data has changed. For example, the Google Contacts application allows users to create, edit, and
share contact information through web, mobile, and desktop interfaces that communicate with servers
running in Google’s data centers. If a contact changes, other devices should learn of the change
quickly. This is the essence of a notification service: informing interested parties of changes to data
in a reliable and timely manner.

Throughout the paper, we refer to application data as objects: named, versioned entities for which
users may receive notifications. For example, a contacts application might model each user’s address
book as an object identified by that user’s email address, or the application may model each contact
as a separate object. Contacts may be shared among users or a user’s devices. When the contact list
is changed, its version number increases, providing a simple mechanism to represent changes.

In the absence of a general service, applications have developed custom notification mechanisms. A
widely used approach is for each client to periodically poll the server for changes. While conceptually



Configuration Choices
Channel HTTP, XMPP, internal RPC (in DC)

Language Java, C++, JavaScript
Platform Web, mobile, native desktop apps
Storage Storage with inter-DC sync or async replication

Table 1: Configurations supported by Thialfi.

simple and easy to implement, polling creates an unfortunate tension between timeliness and resource
consumption. Frequent polling allows clients to learn of changes quickly but imposes significant load
on the server. And, most requests simply indicate that no change has occurred.

An alternative is to push notifications to clients. However, ensuring reliability in a push system is
difficult: a variety of storage, network, and server failures are common at Internet scale. Further,
clients may be disconnected when updates occur and remain offline for days. Buffering messages
indefinitely is infeasible. The server’s storage requirements must be bounded, and clients should not
be overwhelmed by a flood of messages upon wakeup.

As a result of these challenges, push systems at Google are generally best-effort; developers must de-
tect and recover from errors. This is typically done via a low-frequency, backup polling mechanism,
again resulting in occasional, lengthy delays that are difficult to distinguish from bugs.

2.2 Requirements
Summarizing our discussion above, a general notification service should satisfy at least four require-
ments.

• Tracking. The service should track which clients are interested in what data. Particularly for
shared data, tracking a mapping between clients and objects is a common need.
• Reliability. Notifications should be reliable. To the extent possible, application developers should

not be burdened with error detection and recovery mechanisms such as polling.
• End-to-end. Given an unreliable channel, the service must provide reliability in an end-to-end

manner; i.e., it must include a client-side component.
• Flexibility. To be widely applicable, a notification service must impose few restrictions on devel-

opers. It should support web, desktop, and mobile applications written in a variety of languages for
a variety of platforms. At the server, similar diversity in storage and communication dependencies
precludes tight integration with a particular software stack. We show the variety of configurations
that Thialfi supports in Table 1.

2.3 Design Alternatives
Before describing our system in detail, we first consider alternative designs for a notification service.

Integrating notifications with the storage layer: Thialfi treats each application’s storage layer as
opaque. Updates to shared objects must be explicitly published, and applications must explicitly
register for notifications on shared objects. An alternative would be to track object sharing at the
storage layer and automatically generate notifications when shared objects change. We avoid this for
two reasons. The first is diversity: while many applications share a common need for notifications,
applications use storage systems with diverse semantics, data models, and APIs customized to partic-
ular application requirements. We view the lack of a one-size-fits-all storage system as fundamental,
leading us to design notifications as a separate component that is loosely coupled with the storage
layer. The second reason is complexity. Even though automatically tracking object dependencies [22]
may simplify the programming model when data dependencies are complex (e.g., constructing web-
pages on-the-fly with data joins), such application structures are difficult to scale and rare at Google.



Requiring explicit object registrations and updates substantially simplifies our design, and our experi-
ence has been that reasoning about object registrations in our current applications is straightforward.

Reliable messaging from servers to clients: Reliable messaging is a familiar primitive for devel-
opers. We argue for a different abstraction: a reliable notification of the latest version number of an
object. Why not reliable messaging? First, reliable messaging is inappropriate when clients are often
unavailable. Lengthy queues accumulate while clients are offline, leading to a flood of messages
upon wakeup, and server resources are wasted if offline clients never return. Second, message deliv-
ery is often application-specific. Delivering application data requires adhering to diverse security and
privacy requirements, and different client devices require delivery in different formats (e.g., JSON
for browsers, binary for phones). Instead of reliable messaging, Thialfi provides reliable signaling—
the queue of notifications for each object is collapsed to a single message, and old clients may be
safely garbage-collected without sacrificing reliability. Moreover, such an abstraction allows Thialfi
to remain loosely coupled with applications.

3. OVERVIEW
This section gives an overview of the Thialfi architecture and its programming interface.

3.1 Model and Architecture
Thialfi models data in terms of object identifiers and their version numbers. Objects are stored in each
application’s backend servers, not by Thialfi. Each object is named using a variable length byte string
of the application’s choosing (typically less than 32 bytes), which resides in a private namespace for
that application. Version numbers (currently 64-bit) are chosen by applications and included in the
update published to Thialfi.

Application backends are required to ensure that version numbers are monotonically increasing to
ensure reliable delivery; i.e., in order for Thialfi to reliably notify a client of an object’s latest ver-
sion, the latest version must be well-defined. Synchronous stores can achieve this by incrementing
a version number after every update, for example. Asynchronous stores typically have some method
of eventually reconciling updates and reaching a commit point; such stores can issue notifications
to Thialfi afterwards. At Google, to avoid modifying existing asynchronous backend stores, some
services simply inform Thialfi when updates reach one of the storage replicas, using the current time
at that replica as the version number. Although such services run the risk of missing updates due
to clock skew and conflicts, this is rare in practice. Clock skew in the data center is typically low,
conflicts are infrequent for many applications, and replication delay is low (seconds).

As shown in Figure 1, Thialfi is comprised of a client library and server infrastructure. We describe
these components in turn.

Client library: The client library provides applications with a programmatic interface for regis-
tering for shared objects and receiving notifications. The library speaks the Thialfi protocol and
communicates with the Thialfi infrastructure service running in data centers. An application uses the
Thialfi library to register for objects, and the library invokes callbacks to inform the application of
registration changes and to deliver notifications. For each notification, Thialfi informs the applica-
tion of the modified object’s identifier and the latest version known. When the application receives a
notification, it synchronizes object data by talking directly with its servers: Thialfi does not provide
data synchronization.

Server infrastructure: In the data center, application servers apply updates and notify Thialfi when
objects change. We provide a Publisher library that application backends can embed. The publisher
library call:

Publish(objectId, version, source)

ensures that all Thialfi data centers are notified of the change. When present, the optional source
parameter identifies the client that made the change. (This ID is provided by the application client



// Client actions
interface NotificationClient {
Start(byte[] persistentState);
Register(ObjectId objectId, long version);
Unregister(ObjectId objectId);

}

// Client library callbacks
interface NotificationListener {
Notify(ObjectId objectId, long version);

NotifyUnknown(ObjectId objectId);

RegistrationStatusChanged(ObjectId objectId,
boolean isRegistered);

RegistrationFailure(ObjectId objectId,
boolean isTransient);

ReissueRegistrations();

WriteState(byte[] persistentState);
}

Figure 2: The Thialfi client API.
at startup and is referred to as its application ID.) As an optimization, Thialfi omits delivery of the
notification to this client, since the client already knows about the change.

Thialfi supports multiple communication channels to accommodate application diversity. For ex-
ample, native applications may use XMPP [27], while web applications typically use persistent
HTTP connections [17]. This support allows Thialfi to reuse an application’s existing communi-
cation channel, an important capability given the high cost of maintaining a channel in certain con-
texts (e.g., mobile- or browser-based applications). Other than non-corruption, Thialfi imposes few
requirements—messages may be dropped, reordered, or duplicated. Although rare, the channels most
commonly used by applications exhibit all of these faults.

3.2 Security
Given the diversity of authorization and authentication techniques used by applications, Thialfi does
not dictate a particular scheme for securing notifications. Instead, we provide hooks for applications
to participate in securing their data at various points in the system. For example, Thialfi can make
RPCs to application backends to authorize registrations. If required, Thialfi can also make authoriza-
tion calls before sending notifications to clients.

Similarly, applications must provide a secure client-server channel if confidentiality is required. Thi-
alfi does not mandate a channel security policy.

3.3 Client API and Usage
The Thialfi client library provides applications with the API shown in Figure 2, and we refer to these
calls throughout our discussion.

The NotificationClient interface lists the actions available via the client library. The Start() method
initializes the client, and the Register() and Unregister() calls can be used to register/unregister for
object notifications. We point out that the client interface does not include support for generating
notifications. Publish() calls must be made by the application backend.

The NotificationListener interface defines callbacks invoked by the client library to notify the user
application of status changes. Application programmers using Thialfi’s library implement these meth-



ods. When the library receives a notification from the server, it calls Notify() with that object’s ID and
new version number. In scenarios where Thialfi does not know the version number of the object (e.g.,
if Thialfi has never received any update for the object or has deleted the last known version value for
it), the client library uses the NotifyUnknown() call to inform the application that it should refetch
the object from the application store regardless of its cached version. Internally, such notifications are
assigned a sequence number by the server so that they can be reliably delivered and acknowledged in
the protocol.

The client library invokes RegistrationStatusChanged() to inform the application of any registration
information that it receives from the server. It uses RegistrationFailure() to indicate a registration
operation failure to the application. A boolean, isTransient, indicates whether the application should
attempt to retry the operation. ReissueRegistrations() allows the client library to request all registra-
tions from the application. This call can be used to ensure that Thialfi state matches the application’s
intent, e.g., after a loss of server state.

The WriteState() call is an optional method that provides Thialfi with persistent storage on the client,
if available. Client data storage is application-specific; e.g., some applications have direct access to
the filesystem while others are limited to a browser cookie. When a client receives its identifier from
the server, the client library invokes WriteState() with an opaque byte string encoding the identifier,
which is then stored by the application and provided to Thialfi during subsequent invocations of
Start(). This allows clients to resume using existing registrations and notification state. Clients that
do not support persistence are treated as new clients after each restart.

4. DESIGN AND IMPLEMENTATION
This section describes the design and implementation of Thialfi. We highlight several key techniques.

No hard server state: Thialfi operates on registration state (i.e., which clients care about which
objects) and notification state (the latest known version of each object). The Thialfi client library is
responsible for tracking the registration state and updating servers in the event of a discrepancy, so
loss of server-side state does not jeopardize correctness. Moreover, while Thialfi makes a substan-
tial effort to deliver “useful” notifications at specific version numbers, it is free to deliver spurious
notifications, and notifications may be associated with an unknown version. This flexibility allows
notification state to be discarded, provided the occurrence of the drop is noted.

Efficient I/O through multiple views of state: The registration and notification state in Thialfi
consists of relations between clients and objects. There is no clear advantage to choosing either
client ID or object ID as the primary key for this state: notifications update a single object and multiple
clients, while registrations update a single client and multiple objects. To make processing of each
operation type simple and efficient, we maintain two separate views of the state, one indexed by client
ID and one by object ID, allowing each type of operation to be performed via a single write to one
storage location in one view. The remaining view is brought up-to-date asynchronously.

Idempotent operations only: Thialfi is designed so that any server-side operation can be safely
repeated. Every operation commits at the server after a single write to storage, allowing aggres-
sive batching of writes. Any dependent changes are performed in the background, asynchronously.
Avoiding overwrites fosters robustness; operations are simply retried until they succeed.

Buffering to cope with partial storage availability: While data corruption is uncommon, large-
scale storage systems do not have perfect availability. Writes to some storage regions may fail tran-
siently. To prevent this transient storage unavailability from cascading to application backends, Thi-
alfi buffers failed notification writes at available storage locations, migrating buffered state to its
appropriate location when possible.

Figure 3 shows the major components of Thialfi. Bridge servers are stateless, randomly load-
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Figure 3: Overall architecture of Thialfi.

balanced tasks that consume a feed of application-specific update messages from Google’s infras-
tructure pub/sub service, translate them into a standard notification format, and assemble them into
batches for delivery to Matcher tasks. Matchers consume notifications for objects, match them with
the set of registered clients, and forward them to the Registrar for reliable delivery to clients. Matchers
are partitioned over the set of objects and maintain a view of state indexed by object ID. Registrars
track clients, process registrations, and reliably deliver notifications using a view of state indexed by
client ID.

The remainder of this section describes our design in stages, starting with a simplified version of
Thialfi that operates entirely in memory and in one data center only. We use this simplified design
to explain the Thialfi protocol and to describe why discarding Thialfi’s server state is safe. We then
extend the in-memory design to use persistent storage, reducing the cost of recovering failed servers.
Finally, we add replication in order to improve recovery from the failure of entire data centers.

4.1 In-memory Design
An in-memory version of Thialfi stores client and object state in the memory of the Registrar and
Matcher servers. As mentioned above, clients are partitioned over Registrar servers, and objects are
partitioned over Matcher servers. In order to ensure roughly uniform distribution of load, each client
and object is assigned a partitioning key. This key is computed by prepending a hash of the client or
object ID to the ID itself. We statically partition this keyspace into contiguous ranges; one range is
assigned to each server. If a server crashes or reboots, its state is lost and must be reconstructed from
scratch.

Aside from lack of persistence and support for multiple data centers, this design is identical to that
deployed at Google. We next describe the specific state maintained.

4.1.1 In-memory State
Registrar: For each client, the Registrar servers maintain two sets: 1) registrations (objects of inter-
est to the client) and 2) pending notifications (notifications not yet acknowledged by the client). They
also maintain a monotonically-increasing sequence number for each client, used to pick an ordering
for registration operations and to generate version numbers for unknown-version notifications.

Matcher: For each object, Matcher servers store the latest version number provided by the applica-
tion backend. Matcher servers also maintain a copy of the registered clients for each object from the



Registrar; this copy is updated asynchronously. We refer to the combined Matcher and Registrar state
as the C/O-Cache (Client and Object cache).

Thialfi components that we call Propagators asynchronously propagate state between Matchers and
Registrars. The Registrar Propagator copies client registrations to the Matcher, and the Matcher
Propagator copies new notifications to the Registrar.

Both Matchers and Registrars maintain a set of pending operations to perform for objects and clients;
i.e., propagation and delivery of (un)registrations and notifications. The state maintained by each
server thus decomposes into two distinct parts: the C/O-Cache and a pending operation set.

4.1.2 Client Token Management
Thialfi identifies clients using client tokens issued by Registrars. Tokens are composed of two parts:
client identifiers and session identifiers. Tokens are opaque to clients, which store them for inclusion
in each subsequent message. A client identifier is unique and persists for the lifetime of the client’s
state. A session identifier binds a client to a particular Thialfi data center and contains the identity of
the data center that issued the token.

A client acquires tokens via a handshake protocol, in which the Registrar creates an entry for the
client’s state. If the client later migrates to another data center, the Registrar detects that the token
was issued elsewhere and informs the client to repeat the handshake protocol with the current data
center. When possible, the new token reuses the existing client identifier. A client may thus acquire
many session identifiers during its interactions with Thialfi, although it holds only one client token
(and thus one session identifier) at any given time.

The Thialfi client library sends periodic heartbeat messages to the Registrar to indicate that it is online
(a Registrar only sends notifications to online clients). In the current implementation, the heartbeat
interval is 20 minutes, and the Registrar considers a client to be offline if it has not received any mes-
sage from the client for 80 minutes. Certain channels inform Thialfi in a best-effort manner when a
client disconnects, allowing the Registrar to mark the client offline more quickly. Superficially, these
periodic heartbeats might resemble polling. However, they are designed to be extremely lightweight:
the messages are small, and processing only requires a single in-memory operation in the common
case when the client is already online. Thus, unlike application-level polling, they do not pose a
significant scalability challenge.

4.1.3 Registration Operation
Once a client has completed the initial handshake, it is able to execute registrations. When an ap-
plication calls Register(), the client library queues a message to send to the Registrar. (As with all
protocol messages, the application dispatches outgoing registrations asynchronously using its chan-
nel.) An overview of registration is shown in Figure 4.

1. The client library sends a registration message to the Registrar with the object identifier.
2. The Registrar picks an ordering for the registration by assigning it a sequence number, using the

sequence number it maintains for the issuing client. The Registrar writes the registration to the
client record and adds a new entry to the pending operation set.

3. Subsequently, the Registrar Propagator attempts to forward the registration and the application
ID of the registering client to the Matcher responsible for the object via an RPC, and the Matcher
updates the copy of the registration in its object cache. The Registrar Propagator repeats this
until either propagation succeeds or its process crashes.

4. After propagation succeeds, the Registrar reads the latest version of the object from the Matcher
(which reads the versions from its object cache) and writes a pending notification for it into the
client cache (i.e., updates its copy of the latest version). We call this process Registrar post-
propagation. If no version is known, the Registrar generates an unknown-version notification
for the object with the version field set using the sequence number maintained for the client.
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Figure 4: Object registration in Thialfi.

5. The Registrar sends a message to the client confirming the registration and removes the operation
from the pending set.

Clients unregister using an analogous process. To keep the registrations at the client and the Reg-
istrar in sync, Thialfi uses a Registration Sync Protocol. Each message from the client contains a
digest of the client’s registered objects, and each message from the server contains the digest of the
client’s registrations known to the server (in our current implementation, we compute the digest using
HMAC-SHA1 [10]). If the client or the server detects a discrepancy at any point, the client resends its
registrations to the server. If the server detects the problem, it requests that the client resend them. To
support efficient synchronization for large numbers of objects, we have implemented optional support
for Merkle Trees [18], but no application currently using Thialfi has required this mechanism.

The client library keeps track of the application’s intended registrations via registration/unregistration
API calls. To preserve the registration state across application restarts, the library could write all
registrations to the local disk using the WriteState() call (Section 3.3). To simplify persistence re-
quirements, however, Thialfi relies on applications to restate intended registrations on restart. When
a client restarts, the client library invokes ReissueRegistrations(). The library then recomputes the
digest and sends it as part of the regular communication with the server (e.g., in heartbeats). Any dis-
crepancy in the registrations is detected and resolved using the Registration Sync Protocol discussed
above. In the normal case when digests match, no registrations are resent to the server.

4.1.4 Notification Operation
As users modify data, client applications send updates to application servers in the data center. Appli-
cation servers apply the updates and publish notifications to be delivered by Thialfi. Figure 5 shows
the sequence of operations by which Thialfi delivers notifications to registered clients.

1. The application server updates its authoritative copy of user data and notifies Thialfi of the new
version number. Applications publish notifications using a library that ensures each published
notification is received by all data centers running Thialfi. Currently, we use an internal Google
infrastructure publish/subscribe service to disseminate messages to data centers. The pub/sub
service acknowledges the Publisher library only after a reliable handoff, ensuring eventual de-
livery. (During periods of subscriber unavailability, the pub/sub service buffers notifications in
a persistent log.)

2. Thialfi’s Bridge component consumes the feed of published notifications in each data center
and processes them in small batches. The Bridge delivers the update to the Matcher server
responsible for the object.

3. The Matcher updates its record for the object with the new version number. Subsequently, using
its copy of the registered client list, the Matcher propagator determines which Registrar servers



Object'
Cache'

Matcher'

Client'
Cache'

Registrar' Client'
library'

Matcher'
Propagator'

4a.$Write$no,fica,on$

3b.$Propagate$

3.$Update$version$
5.$Clear$pending$

3a.$Read$client$list$

Publisher'
library'

1.$Publish$

4b.$Ack$propagate$

6a.$No,fy$

6b.$Ack$no,fy$

Bridge'
2.$Batch$publish$

Figure 5: Notification delivery in Thialfi.

Registrar Table

Row Key Client State Object State Propagation State
created last-seqno presence reg-{oid} log-{oid} pending

hash(user):user:uuid appid@0 ""@seqno addr@seqno ""@seqno ""@version ""@seqno

Matcher Table

Row Key Object State Client State Propagation State
version reg-{client-id} pending

hash(object-id):object-id appid@version appid@seqno ""@version

Table 2: Bigtable layout for server-side state. a@b indicates a value a at timestamp b. seqno
refers to the sequence number assigned by the Registrar for that particular client.

have clients registered for the object. It sends RPCs to each Registrar server with (client, oid,
version) tuples indicating which clients need to be notified. The client identifiers are used to
index the Registrar’s C/O-Cache efficiently.

4. Each Registrar receiving a message stores the pending notification for the appropriate clients
and responds to the RPC.

5. When all Registrars have responded, the operation is removed from the Matcher pending oper-
ation set.

6. Periodically, the Registrars resend unacknowledged notifications for online clients. Currently,
we use a 60-second retransmission interval.

4.1.5 Handling Server Failures
We now discuss how a server reconstructs its in-memory state after a restart (an independent infras-
tructure system at Google monitors and restarts services that have crashed or become unresponsive).
For simplicity, consider a brute-force approach: if any server fails, all servers restart, and the data
center identifier is changed to a new value. Subsequent messages from clients with old tokens are
detected by the Registrars, triggering a token update as described in §4.1.2. The Registration Sync
Protocol then ensures that the clients reissue their registrations.

Client registration messages are sufficient to reconstruct the registration state at the Registrar. The
latest-version data at the Matcher is not recovered (and pending notifications are lost) since there is
no mechanism to fetch version information from the application backend. Nonetheless, correctness
is not compromised. When processing client registrations, the Registrar will send unknown-version
notifications for each registered object. This triggers client requests to the application backend to
learn the latest version. Such an approach is conservative since the data may not have changed, but
Thialfi cannot easily confirm this. After restart, Thialfi resumes normal processing of updates.



4.1.6 Handling Network Failures
There are three types of messages sent between the client and server: client token requests, registra-
tion changes, and notifications / acks. Any of these may be lost, reordered, or duplicated. Notifica-
tions are acknowledged and hence reliably delivered, and reordering and duplication are explicitly
permitted by the semantics of Thialfi. All other messages are retried by the client as needed. Clients
detect and ignore duplicate or reordered token grant messages from the Registrar using a nonce, and
the Registration Sync Protocol ensures that client and server registration state eventually converge.

4.2 Persistent Storage
At the scale of millions of clients, recovering from failures by flushing and reconstructing state is
impractical. Some retention of state is required to reduce work during recovery. In this section, we
describe how Thialfi currently uses Bigtable [7] to address this issue. The main idea guiding our use
of persistent storage is that updates to the C/O-Cache in the memory-only design translate directly
into blind writes into a Bigtable; i.e., updating state without reading it. Because Bigtable is based on
a log-structured storage system, writes are efficient and fast.

4.2.1 Bigtable Layout
Storage locations in a Bigtable (Bigtable cells) are named by {row key, column, version} tuples, and
Bigtables may be sparse; i.e., there may be many cells with no value. We exploit this property in our
storage layout to avoid overwrites. For example, in the Registrar table, for a particular client/object
registration pair, we use a distinct row key (based on the client ID), column (based on the object ID),
and version (based on the registration sequence number). When querying the registration status for
that client/object pair, we simply read the latest version.

Adapting our in-memory representation to Bigtable is straightforward. Registrar and Matcher state
is stored in separate Bigtables. The partitioning keys used in the in-memory system become the
row keys used in the Bigtables, distributing load uniformly. We continue to statically partition the
keyspace over the Registrar and Matcher servers. Each server is thus assigned a contiguous range of
Bigtable rows.

The Bigtable schema is summarized in Table 2. Each row of the Matcher table stores the latest
known version for an object, the application ID of the client that created that version, and the set
of clients registered for that object. Each Registrar row stores the client’s application ID, the latest
sequence number that was generated for the client by the Registrar, a channel-specific address if the
client is online, the object IDs that the client is registered for, and the objects for which the client
has an unacknowledged notification. Each table also contains a column for tracking which rows
have pending information to propagate to the other table. Note that a cell is written in the last-seqno
column whenever a sequence number is used for the client. This ensures that sequence numbers
always increase.

4.2.2 In-memory State
In order to improve performance, we cache a small amount of state from Bigtable in Registrar and
Matcher server memory. The Registrars cache the registration digest of each online client (but not
the full set of registrations). The Matchers and Registrars also cache their pending operation sets.
We rely on Bigtable’s memory cache for fast reads of the registrations and pending notifications.
Since our working set currently fits in Bigtable’s memory cache, this has not created a performance
problem. (We may revisit this decision if emerging workloads change our Bigtable memory cache
profile.)

The outcome of these properties is that the in-memory state of Thialfi servers corresponds to in-
progress operations and limited data for online clients only.

4.2.3 Pushing Notifications to Clients



As with the in-memory design, reliable notification delivery to clients is achieved by scanning for
unacknowledged notifications. Instead of memory, the scan is over the Registrar Bigtable. For ef-
ficiency and performance, we also introduce a fast path: we unreliably send notifications to online
clients during Matcher propagation. While channels are unreliable, message drops are rare, so this
fast path typically succeeds. We confirm this in our evaluation (§6).

Realizing that a lengthy periodic scan adversely impacts the tail of the notification latency distri-
bution, we are currently implementing a scheme that buffers undelivered notifications in Registrar
memory to more quickly respond to failures.

4.2.4 Client Garbage Collection
If a client remains offline for an extended period (e.g., several days), Thialfi garbage-collects its
Bigtable state. This involves deleting the client’s row in the Registrar Bigtable and deleting any
registration cells in the Matcher Bigtable. If the client later comes back online, our use of blind
writes means that the client’s row may be inadvertently recreated. Although rare, some mechanism is
required to detect such an entry, remove it, and notify the client that it must restart with a fresh client
ID.

In order to detect client resurrection after garbage collection, Thialfi maintains a created cell in the
client’s Registrar row (Table 2). The Registrar writes this cell when it assigns an ID for a client, and
the garbage collector deletes it; no other operations modify this cell. If a garbage collected client
comes back online as described above, its created cell will be absent from the recreated row. An
asynchronous process periodically scans the Registrar Table for rows without created cells. When
encountered, the ‘zombie’ client row is deleted. Also, if the client is online, it is informed that its
ID is invalid. Upon receiving this message, the client discards its ID and reconnects as a new client.
This message may be lost without compromising correctness; it will be resent by the asynchronous
process if the client attempts further operations.

4.2.5 Recovery from Server Failures
We now describe how persistent storage reduces the burden of failure recovery. The server caches
of Bigtable state and of pending operations are write-through caches, so they may be restored after a
restart by simply scanning the Bigtable. Since each server is assigned a contiguous range, this scan is
efficient. Additionally, scanning to recover pending operations yields a straightforward strategy for
shedding load during periods of memory pressure: a server aborts in-progress propagations, evicts
items from its pending operation set, and schedules a future scan to recover.

If required, all Bigtable state can be dropped, with recovery proceeding as in the in-memory design.
In practice, this has simplified service administration significantly; e.g., when performing a Bigtable
schema change, we simply drop all data, avoiding the complexity of migration.

4.2.6 Tolerating Storage Unavailability
A consequence of storing state in Bigtable is that Thialfi’s overall availability is limited by that of
Bigtable. While complete unavailability is extremely rare, a practical reality of large-scale storage
is partial unavailability—the temporary failure of I/O operations for some rows, but not all. In our
experience, minor Bigtable unavailability occurs several times per day. Our asynchronous approach
to data propagation accommodates storage unavailability. I/O failures are skipped and retried, but do
not prevent partial progress; e.g., clients corresponding to available regions will continue to receive
notifications.

This covers the majority of Thialfi I/O with two exceptions: 1) the initial write when accepting a
client operation, e.g., a registration, and 2) the write accepting a new version of an object at the
Matcher. In the first case, the client simply retries the operation.

However, accepting new versions is more complex. One possibility is to have the Bridge delay



the acknowledgement of a notification to the publish/subscribe service until the Matcher is able to
perform the write. This approach quickly results in a backlog being generated for all notifications
destined for the unavailable Matcher rows. Once a large backlog accumulates, the pub/sub service
no longer delivers new messages, delaying notifications for all clients in the data center. Even in
the absence of our particular pub/sub system, requiring application backends to buffer updates due to
partial Thialfi storage unavailability would significantly increase their operational complexity.

Given the prevalence of such partial storage unavailability in practice, we have implemented a simple
mechanism to prevent a backlog from being generated. To acknowledge a notification, the Bridge
needs to record the latest version number somewhere in stable storage. It need not be written to
the correct location immediately, so long as it is eventually propagated there. To provide robustness
during these periods, we reissue failed writes to a distinct, scratch Bigtable. A scanner later retries
the writes against the Matcher Bigtable. The Everest system [19] uses a similar technique to spread
load; in Thialfi, such buffering serves to reduce cascading failures.

Specifically, for a given object, we deterministically compute a sequence of retry locations in a scratch
Bigtable. These are generated by computing a salted hash over the object ID, using the retry count
as the salt. This computation exploits Thialfi’s relaxed semantics to reduce the amount of scratch
storage required; successive version updates to the same object overwrite each other in the scratch
table when the first scratch write succeeds. Storing failed updates in random locations—a simple
alternative—would retain and propagate all updates instead of only the latest. While correct, this is
inefficient, particularly for hot objects. Our scheme efficiently supports the common case: a series of
Matcher writes fails, but the first attempt of each corresponding scratch write succeeds.

4.3 Supporting Multiple Data Centers
To meet availability requirements at Google, Thialfi must be replicated in multiple data centers. In
this section, we describe the extensions required to support replication, completing the description of
Thialfi’s design. Our goal is to ensure that a site failure does not degrade reliability; i.e., notifications
may be delayed, but not dropped. Clients migrate when a failure or load balancing event causes
protocol messages to be routed from the Thialfi data center identified in the client’s session token to
a Thialfi instance in another data center.

We require that the application’s channel provide client affinity; i.e., Thialfi messages from a given
client should be routed to the same data center over short time scales (minutes). Over longer time
scales, clients may migrate among data centers depending on application policies and service avail-
ability. Also, when a Thialfi data center fails, we require the application channel to re-route messages
from clients to other data centers. These characteristics are typical for commonly used channels.

Even without replication of registration state, Thialfi can automatically migrate clients among data
centers. When a client connects to a new data center, the Registrar instructs it to repeat the token-
assignment handshake, by which it obtains a new token (§4.1.2). Since the new data center has no
information about the client’s registrations, the client and server registration digests will not match,
triggering the Registration Sync Protocol. The client then reissues all of its registrations. While
correct, this is expensive; a data center failure causes a flood of re-registrations. Thus, replication is
designed as an optimization to decrease such migration load.

4.3.1 State Replication
Thialfi uses two forms of state replication: 1) reliable replication of notifications to all data centers
and 2) best-effort replication of registration state. The pub/sub service acknowledges the Publisher
library after a reliable handoff and ensures that each notification is reliably delivered to all Thialfi
data centers; the Thialfi Matchers in each data center acknowledge the notification only after it has
been written to stable storage.

When replicating registration state, we use a custom, asynchronous protocol that replicates only the



state we must reconstruct during migration. Specifically, we replicate three Registrar operations be-
tween Thialfi data centers: 1) client ID assignment, 2) registrations, and 3) notification acknowledge-
ments. Whenever a Registrar processes one of these operations, it sends best-effort RPC messages to
the Registrars in other data centers. At each data center, replication agents in the Registrar consume
these messages and replay the operations. (While we have implemented and evaluated this scheme,
we have not yet deployed it in production.)

We initially attempted to avoid designing our own replication scheme. A previous design of Thialfi
used a synchronous, globally consistent storage layer called Megastore [2]. Megastore provides
transactional storage with consistency guarantees spanning data centers. Building on such a system
is appealingly straightforward: simply commit a transaction that updates relevant rows in all data
centers before acknowledging an operation. Unfortunately, micro-benchmarks show that Megastore
requires roughly 10 times more operations per write to its underlying Bigtables than a customized
approach. For a write-intensive service like Thialfi, this overhead is prohibitive.

Although the Thialfi replication protocol is designed to make migration efficient, an outage still
causes a spike in load. During a planned outage, we use an anti-storm technique to spread load.
During a migration storm, Thialfi silently drops messages from a progressively-decreasing fraction
of migrated clients at the surviving data centers, trading short-term unavailability for reduced load.

5. ACHIEVING RELIABLE DELIVERY
In this section, we describe Thialfi’s notion of reliability and argue that our mechanisms provide it.
We define reliable delivery as follows:

Reliable delivery property: If a well-behaved client reg-
isters for an object X, Thialfi ensures that the client will
always eventually learn of the latest version of X.

A well-behaved client is one that faithfully implements Thialfi’s API and remains connected long
enough to complete required operations, e.g., registration synchronization. In our discussion, we
make further assumptions regarding integrity and liveness of dependent systems. First, we assume
that despite transitory unavailability, Bigtable tablets will eventually be accessible and will not corrupt
stored data. Second, we assume that the communication channel will not corrupt messages and will
eventually deliver them given sufficient retransmissions.

As is typical for many distributed systems, Thialfi’s reliability goal is one-sided. By this we mean
that, while clients will learn the latest version of registered objects, notifications may be duplicated
or reordered, and intermediate versions may be suppressed.

Thialfi achieves end-to-end reliability by ensuring that state changes in one component eventually
propagate to all other relevant components of the system. We enumerate these components and their
interactions below and discuss why state transfer between them eventually succeeds. We have not
developed a formal model of Thialfi nor complete proofs of its safely or liveness; these are left as
future work.

Registration state is determined by the client, from which it propagates to the Registrar and Matcher
(subject to access control policies). The following mechanisms ensure the eventual synchronization
of registration state across the three components:

• Client↔ Registrar: Every message from the client includes a digest that summarizes all client
registration state (§4.1.3). If the client-provided digest disagrees with the state at the Registrar, the
synchronization protocol runs, after which client and server agree. Periodic heartbeat messages
include the registration digest, ensuring that any disagreement will be detected.



• Registrar → Matcher: When the Registrar commits a registration state change to Bigtable, a
pending work marker is also set atomically. This marker is cleared only after all dependent writes
to the Matcher Bigtable have completed successfully. All writes are retried by the Registrar Prop-
agator if any failure occurs. (Because all writes are idempotent, this repetition is safe.)

Notification state comes from the Publisher, which provides a reliable feed of object-version pairs
via the pub/sub service. These flow reliably through the Bridge, Matcher, and Registrar to the client
using the following mechanisms:

• Bridge → Matcher: Notifications are removed from the update feed by the Bridge only after
they have been successfully written to either their appropriate location in the Matcher Bigtable
or buffered in the Matcher scratch Bigtable. A periodic task in the Bridge reads the scratch table
and resends the notifications to the Matcher, removing entries from the scratch table only after a
successful Matcher write.
• Matcher → Registrar: When a notification is written to the Matcher Bigtable, a pending work

marker is used to ensure eventual propagation. This mechanism is similar to that used for Registrar
→Matcher propagation of registration state.
Notification state also flows from the Matcher to the Registrar in response to registration state
changes. After a client registers for an object, Registrar post-propagation will write a notification
at the latest version into the client’s Registrar row (§4.1.3). This ensures that the client learns of
the latest version even if the notification originally arrived before the client’s registration.
• Registrar → Client: The Registrar retains a notification for a client until either the client ac-

knowledges it or a subsequent notification supersedes it. The Registrar periodically retransmits
any outstanding notifications while the client is online, ensuring eventual delivery.

Taken together, local state propagation among components provides end-to-end reliability. Specifi-
cally:

• A client’s registration eventually propagates to the Matcher, ensuring that the latest notification
received for the registered object after the propagation will be sent to the client.
• Registrar post-propagation ensures that a client learns the version of the object known to Thialfi

when its registration reached the Matcher. If no version was present at the Matcher, the client
receives a notification at unknown version.

The preceding discussion refers to system operation within a single data center. In the case of mul-
tiple data centers, our Publisher Library considers notification publication complete only after the
notification has been accepted by the Matcher or buffered in the persistent storage of Google’s in-
frastructure publish/subscribe service in all data centers. Thus, each application’s notifications are
reliably replicated to all data centers. This is in contrast to Thialfi’s registration state, which is repli-
cated on a best-effort basis. However, so long as a client is not interacting with a given data center,
there is no harm in the registration state being out-of-sync there. When the client migrates to a new
data center, the Registration Sync Protocol (§4.1.3) ensures that the new Registrar obtains the client’s
current registration state. The propagation and post-propagation mechanisms described above also
apply in the new data center, ensuring that the new Registrar will reliably inform the client of the
latest version of each registered object. Taken together, these mechanisms provide reliable delivery
when operating with multiple data centers.

6. EVALUATION
Thialfi is a production service that has been in active use at Google since the summer of 2010.
We report performance from this deployment. Additionally, we evaluate Thialfi’s scalability and



fault tolerance for synthetic workloads at the scale of millions of users and thousands of updates per
second. Specifically, we show:

• Ease of adoption: Applications can adopt Thialfi with minimal design and/or code changes. We
describe a representative case study, the Chrome browser, for which a custom notification service
was replaced with Thialfi. (§6.1)
• Scalability: In production use, Thialfi has scaled to millions of users. Load testing shows that

resource consumption scales linearly with active users and notification rate while maintaining
stable notification latencies. (§6.2)
• Performance: Measurements of our production deployment show that Thialfi delivers 88% of

notifications in less than one second. (§6.3)
• Fault-tolerance: Thialfi is robust to the failure of an entire data center. In a synthetic fail-over ex-

periment, we rapidly migrate over 100,000 clients successfully and quantify the over-provisioning
required at remaining instances in order to absorb clients during fail-over. We also provide mea-
surements of transient unavailability in production that demonstrate the practical necessity of cop-
ing with numerous short-term faults. (§6.4)

6.1 Chrome Sync Deployment
Chrome supports synchronizing client bookmarks, settings, extensions, and so on among all of
a user’s installations. Initially, this feature was implemented by piggy-backing on a previously-
deployed chat service. Each online client registered its presence with the chat service and would
broadcast a chat metadata message notifying online replicas that a change had committed to the
back-end storage infrastructure. Offline clients synchronized data on startup. While appealingly
simple, this approach has three drawbacks:

• Costly startup synchronization: The combined load of synchronizing clients on startup is signif-
icant at large scale. Ideally, synchronization of offline clients would occur only after a change in
application data, but no general-purpose signaling mechanism was available.
• Unreliable chat delivery: Although generally reliable, chat message delivery is best-effort. Even

when a client is online, delivery is not guaranteed, and delivery failures may be silent. In some
cases, this resulted in a delay in synchronization until the next browser restart.
• Lack of fate-sharing between updates and notifications: Since clients issue both updates and

change notifications, the update may succeed while the notification fails, leading to stale replicas.
Ensuring eventual broadcast of the notification with timeout and retry at the client is challenging;
e.g., a user may simply quit the program before it completes.

While these issues might have been addressed with specific fixes, the complexity of maintaining a re-
liable push-based architecture is substantial. Instead, Chrome adopted a hybrid approach: best-effort
push with periodic polling for reliability. Unfortunately, the back-end load arising from frequent
polling was substantial. To control resource consumption, clients polled only once every few hours.
This again gave rise to lengthy, puzzling delays for a small minority of users and increased complexity
from maintaining separate code paths for polling and push updates.

These issues drove Chrome’s adoption of Thialfi, which addresses the obstacles above. Thialfi clients
are persistent; offline clients receive notifications on startup only if a registered object has changed
or the client has been garbage collected. This eliminates the need for synchronization during every
startup. Thialfi provides end-to-end reliability over the best-effort communication channel used by
Chrome, thereby easing the porting process. Finally, Thialfi servers receive notifications directly from
Chrome’s storage service rather than from clients, ensuring that notification delivery is fate-shared
with updates to persistent storage.

Migrating from custom notifications to Thialfi required modest code additions and replaced both
the previous push and polling notification support. Chrome includes Thialfi’s C++ client library,



Figure 6: Resource consumption and notification latency as active users increase.

implements our API (Figure 2), and routes Thialfi notifications to appropriate Chrome components.
In full, Chrome’s Thialfi-specific code is 1,753 lines of commented C++ code (535 semicolons).

6.2 Scalability
We evaluate Thialfi’s scalability in terms of resource consumption and performance. We show that
resource consumption increases proportionally with increases in load. With respect to performance,
we show that notification latencies are stable as load increases, provided sufficient resources. These
measurements confirm our practical experience. To support increasing usage of Thialfi, we need only
allocate an incremental amount of additional infrastructure resources. The two main contributors to
Thialfi’s load are 1) the number of active users and 2) the rate at which notifications are published.
We consider each in turn, measuring synthetic workloads on shared Google clusters. While our
experiments are not performance-isolated, the results presented are consistent over multiple trials.

Increasing active users: Increasing the number of active users exercises registration, heartbeat pro-
cessing, and client / session assignment. To measure this, we recorded the resource consumption of
Thialfi in a single data center while adding 2.3 million synthetic users. Each user had one client (the
number of clients per user does not impact performance in Thialfi). Clients arrived at a constant rate
of 570 per second. Each registered for five distinct objects and issued a random notification every 8
minutes and a heartbeat message every 20 minutes. The version of each notification was set to the
current time, allowing registered clients to measure the end-to-end latency upon receipt.

Figure 6 shows the results. As a proxy for overall resource consumption, we show the increas-
ing CPU consumption as users arrive. Demand for other resources (network traffic, RPCs, memory)
grows similarly. The CPU data is normalized by the amount required to support a baseline of 100,000
users. Overall, increasing active users 23-fold (from 100,000 to 2.3 million) requires ∼3× the re-
sources. Throughout this increase, median notification delays are stable, ranging between 0.6–0.7
seconds. (Because these synthetic clients are local to the data center, delays do not include wide-area
messaging latency.)

Increasing notification rate: Increasing the notification rate stresses Matcher to Registrar propaga-
tion. In this case, we measure resource consumption while varying the notification rate for a fixed set
of 1.4 million synthetic clients that have completed registrations and session assignment; all clients
were online simultaneously for the duration of the experiment. As in the previous measurements,
each client registered for five objects and each user had one client.

Figure 7 shows the results of scaling the notification rate. We report CPU consumption normalized
by the amount required to support a baseline notification rate of 1,000 per second and increase the



Figure 7: Resource consumption and notification latency as the notification rate increases.

Figure 8: Cumulative distribution of notification latencies randomly sampled from our live
deployment.

rate by 1,000 up to 13,000. As before, median notification delays remain stable with proportional
resource consumption.

6.3 Performance
The previous measurements quantify median performance for synthetic workloads. We next examine
the distribution of notification latencies observed in our production deployment. Each Thialfi com-
ponent tracks internal propagation delays by appending a log of timestamps to each notification as it
flows through the system.

Figure 8 shows a CDF of 2,514 notifications sampled over a 50-minute period from an active Thi-
alfi cell. 88% of notifications are dispatched in less than one second. However, as is typical in
asynchronous distributed systems operating on shared infrastructure, a minority of messages may be
delayed for much longer, exceeding two seconds in our measurements.

We point out that these delays do not include delivery and acknowledgements from clients them-
selves; we measure only the delay within Thialfi from the receipt of a notification to the first attempt
to send it to an online client. End-to-end delays vary significantly due to the variable quality of chan-
nels and the lengthy delays incurred by offline clients. In practice, network propagation adds between
30–100 ms to overall notification latency.

In practice, the majority of Thialfi’s delay is self-imposed. Our current implementation aggressively
batches Bigtable operations and RPC dispatch to increase efficiency. This is illustrated in Figure 9,
which shows the delay for each stage of notification delivery averaged over a 10-minute interval. This
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data is drawn from our production deployment. The Publisher library appends an initial timestamp
when the notification is generated by the application, and its propagation delay to Thialfi’s bridge
is fundamental. Once received, the RPC sending a notification from the bridge to the Matcher is
batched with a maximum delay of 500 ms. Matcher Bigtable writes are similarly batched. During
propagation, the Matcher reads the active client list—this data is typically retrieved directly from
Bigtable’s in-memory cache. Finally, the propagation RPC to the Registrar has a batch delay of
200 ms.

The majority of our current applications use Thialfi as a replacement for lengthy polling, and the
sub-second delays associated with batching are acceptable. But, as Figure 9 shows, we can further
reduce Thialfi’s delay by simply reducing the batching delay of relevant components. This increases
resource demands but does not introduce any fundamental scalability bottlenecks.

6.4 Fault Tolerance
We evaluate fault tolerance in two ways. First, we examine fail-over of clients between data centers.
This exercises our synchronization protocol and quantifies the over-provisioning required to cope
with data center failure in practice. Second, we present a month-long trace of how often Thialfi
buffers incoming notifications to cope with small periods of partial Matcher unavailability. This
shows the practical necessity for our techniques.

Data center fail-over: The failure of a data center requires that clients be migrated to a new in-
stance and their state synchronized with new servers. Migration can be expensive at the server; it
requires reading the set of registered objects, computing the digest, sending pending notifications,
and processing registration requests (if any). Applications with few updates and/or lengthy heartbeat
intervals naturally spread migration load over a lengthy interval. Here, we consider a more challeng-
ing case: rapidly migrating tens of thousands of clients with very frequent heartbeats to ensure rapid
fail-over.

We instantiated 380,000 clients spread uniformly across three distinct Thialfi data centers with a
heartbeat interval of 30 seconds. Each client registered for five objects and generated random notifi-
cations yielding an incoming notification rate of roughly 11,000/sec across all clients. After allowing
the system to stabilize, we halted the Thialfi instance of one data center while measuring the CPU
consumption of the remaining two as well as the overall client notification rate. The failed data cen-
ter was not restored for the duration of the experiment. Note that this experiment was performed
using a prior version of the Registration Sync Protocol; rather than including the registration digest
in each message, clients request the full registration list during migration. This modification has not
significantly changed resource consumption in practice.



Figure 10: CPU usage and notification rate during the sudden failure of a Thialfi data center.

Figure 11: A month-long trace of notification buffering during Matcher unavailability or
Matcher storage unavailability.

Figure 10 shows the results. We normalize CPU usage by the first observation taken in steady state.
After several minutes, we fail one data center, which clients detect after three failed heartbeats. This
is reflected by increased CPU consumption at the remaining instances and a sudden drop in notifica-
tion receive rate corresponding to clients in the failed data center. As clients migrate, accumulated
notifications are discharged as clients are brought up-to-date. Shortly after, the system stabilizes. To
migrate 33% of clients over several minutes, Thialfi requires over-provisioning by a factor of ∼1.6.

Matcher unavailability: Thialfi’s provisions for fault tolerance arise from practical experience. For
example, our implementation buffers notifications to a temporary Bigtable to cope with transient un-
availability (§4.2.6). This mechanism was added after our initial deployment in response to frequent
manual intervention to respond to failures. Figure 11 shows a month-long trace of notification buffer-
ing, confirming the need for error handling in practice. After deploying this solution, the number
of alerts that occurred due to a backlog disappeared completely. We point out that buffering occurs
not only during storage unavailability but any unavailability of the Matcher, e.g., during software
upgrades or restarts. Support for automatically buffering notifications without manual action during
these periods has greatly simplified service administration.

7. RELATED WORK



The problem of scalable event notification has received significant attention in the distributed systems
community, which we draw on in our design. Thialfi differs from existing work in two principal ways.
The first is the constraints of our environment. Thialfi’s design stems from the unique requirements
of Internet applications, infrastructure services, and the failures they exhibit. The second difference is
our goal. Our API and semantics provide developers with reliability that simplifies development, but
Thialfi does not impose significant restrictions on an application’s runtime environment or software
stack.

Thialfi builds on existing infrastructure services widely used at Google. We use Bigtable [7] to
store object and client data. The Chubby lock service [4] provides reliable, consistent naming and
configuration of our server processes. While specific to Google, the functionality of these systems is
being increasingly replicated by open source alternatives for which Thialfi’s design could be adapted.
For example, HBase [12] provides Bigtable-like structured storage atop the HDFS block store [13],
and Zookeeper [15] provides a highly reliable group coordination service.

Thialfi’s provisions for fault-tolerance draw on emerging practical experience with infrastructure ser-
vices [3, 9, 11, 21]. Our experience with performance variability and communications failures is
consistent with these observations. But, unlike many existing infrastructure services, Thialfi is ex-
plicitly designed to cope with the failure of entire data centers. Megastore [2] shares this goal, using
synchronous replication with Paxos [16] to provide consistent structured data storage. While early
designs of Thialfi were built atop Megastore to inherit its robustness to data center failure, we eventu-
ally adopted replication and fault-tolerance techniques specific to a notification service; these increase
efficiency substantially.

Our goal of providing a scalable notification service is shared by a number of P2P notification and
publish / subscribe systems, e.g., Bayeux [29], Scribe [23], and Siena [6]. These systems construct
multicast trees on overlay routing substrates in order to efficiently disseminate messages. While
Thialfi addresses a similar problem, differences between P2P and infrastructure environments neces-
sitate radical differences in our design. For example, P2P message delivery requires direct browser-
to-browser communication that is precluded by fundamental security policies [24]. Also, message
delivery is best-effort, departing from our goal of maintaining reliable delivery of notifications. Sig-
nificant additional work exists on publish / subscribe systems (e.g. [1, 20, 25, 26]), but these systems
provide richer semantics and target lower scale.

For web applications, Thialfi addresses a longstanding limitation of HTTP—the need for polling to
refresh data. Others have observed these problems; e.g., Cao and Liu [5] advocate the use of inval-
idations as an alternative to polling to maintain the freshness of web documents, but their proposed
protocol extensions were not taken up. Yin et al. [28] study the efficiency of HTTP polling and pro-
pose an invalidation protocol that is conceptually similar to Thialfi, although it operates on a single
HTTP server only. We reexamine these problems at much larger scale. Cowling et al. [8] mention
the applicability of Census, a Byzantine-fault-tolerant group membership system, to the problem of
large-scale cache invalidation, but they leave the design to future work.

More recently, practitioners have developed a number of techniques to work around the request / reply
limitations of HTTP [17]. Many approaches rely on a common technique: each client maintains an
in-flight request to the server, which replies to this outstanding request only when new data is avail-
able. More recently, web sockets [14] have been proposed as a standard enabling full-duplex HTTP
messaging. Thialfi supports these channels transparently, separating the implementation details of
achieving push messages from the semantics of the notification service.

8. LESSONS LEARNED
In the process of designing, implementing, and supporting Thialfi we learned several lessons about
our design.



For many applications, the signal is enough. Our choice to provide applications with only a no-
tification signal was contentious. In particular, developers have almost universally asked for richer
features than Thialfi provides: e.g., support for data delivery, message ordering, and duplicate sup-
pression. Absent these more compelling features, some developers are hesitant to adopt Thialfi. We
have avoided these features, however, as they would significantly complicate both our implementa-
tion and API. Moreover, we have encountered few applications with a fundamental need for them.
For example, applications that would prefer to receive data directly from Thialfi typically store the
data in their servers and retrieve it after receiving a notification. While developers often express
consternation over the additional latency induced by the retrieval, for many applications this does
not adversely affect the user experience. In our view, reliable signaling strikes a balance between
complexity and system utility.

Client library rather than client protocol. Perhaps more than any other component in the system,
Thialfi’s client library has undergone significant evolution since our initial design. Initially, we had
no client library whatsoever, opting instead to expose our protocol directly. Engineers, however,
strongly prefer to develop against native-language APIs. And, a high-level API has allowed us to
evolve our client-server protocol without modifying application code.

Initially, the client library provided only a thin shim around RPCs, e.g., register, unregister, acknowl-
edge. This API proved essentially unusable. While seemingly simple, this initial design exposed too
many failure cases to application programmers, e.g., server crashes and data center migration. This
experience lead us to our goal of unifying error handling with normal operations in Thialfi’s API.

Complexity at the server, not the client. The presence of a client library creates a temptation to
improve server scalability by offloading functionality. Our second client library took exactly this
approach. For example, it detected data center switchover and drove the recovery protocol, sub-
stantially simplifying the server implementation. In many systems, this design would be preferable:
server scalability is typically the bottleneck, and client resources are plentiful. But, a sophisticated
client library is difficult to maintain. Thialfi’s client library is implemented in multiple languages,
and clients may not upgrade their software for years, if ever. In contrast, bug and performance fixes
to data center code can be deployed in hours. Given these realities, we trade server resources for
client simplicity in our current (third) client library.

Asynchronous events, not callbacks. Developers are accustomed to taking actions that produce
results, and our initial client libraries tried to satisfy this expectation. For example, the register call
took a registration callback for success or failure. Experience showed callbacks are not sufficient;
e.g., a client may become spontaneously unregistered during migration. Given the need to respond
to asynchronous events, callbacks are unnecessary and often misleading. Clients only need to know
current state, not the sequence of operations leading to it.

Initial workloads have few objects per client. A key feature of Thialfi is its support for tens of
thousands of objects per client. At present, however, no client application has more than tens of
objects per client. We suspect this is because existing client applications were initially designed
around polling solutions that work best with few objects per client. Emerging applications make use
of fine-grained objects, and we anticipate workloads with high fanout and many objects per client.

9. SUMMARY
We have presented Thialfi, an infrastructure service that provides web, desktop, and mobile client ap-
plications with timely (sub-second) notifications of updates to shared state. To make Thialfi generally
applicable, we provide a simple object model and client API that permit developers flexibility in com-
munication, storage, and runtime environments. Internally, Thialfi uses a combination of server-side
soft state, asynchronous replication, and client-driven recovery to tolerate a wide range of failures
common to infrastructure services, including the failure of entire data centers. The Thialfi API is
structured so that these failures are handled by the same application code paths used for normal op-



eration. Thialfi is in production use by millions of people daily, and our measurements confirm its
scalability, performance, and robustness.
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