
Intrusion Recovery for Database-backed Web
Applications

Ramesh Chandra, Taesoo Kim, Meelap Shah,
Neha Narula, and Nickolai Zeldovich

MIT CSAIL

ABSTRACT
WARP is a system that helps users and administrators of web applications recover from intrusions
such as SQL injection, cross-site scripting, and clickjacking attacks, while preserving legitimate user
changes. WARP repairs from an intrusion by rolling back parts of the database to a version before
the attack, and replaying subsequent legitimate actions. WARP allows administrators to retroactively
patch security vulnerabilities—i.e., apply new security patches to past executions—to recover from
intrusions without requiring the administrator to track down or even detect attacks. WARP’s time-travel
database allows fine-grained rollback of database rows, and enables repair to proceed concurrently
with normal operation of a web application. Finally, WARP captures and replays user input at the
level of a browser’s DOM, to recover from attacks that involve a user’s browser. For a web server
running MediaWiki, WARP requires no application source code changes to recover from a range of
common web application vulnerabilities with minimal user input at a cost of 24–27% in throughput
and 2–3.2 GB/day in storage.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services.

General Terms: Security.

1 INTRODUCTION
Many web applications have security vulnerabilities that have yet to be discovered. For example,
over the past 4 years, an average of 3–4 previously unknown cross-site scripting and SQL injection
vulnerabilities were discovered every single day [27]. Even if a web application’s code contains no
vulnerabilities, administrators may misconfigure security policies, making the application vulnerable
to attack, or users may inadvertently grant their privileges to malicious code [8]. As a result, even
well-maintained applications can and do get compromised [4, 31, 33]. Furthermore, after gaining
unauthorized access, an attacker could use web application functionality such as Google Apps
Script [7, 9] to install persistent malicious code, and trigger it at a later time, even after the underlying
vulnerability has been fixed.

Despite this prevalence of vulnerabilities that allows adversaries to compromise web applications,
recovering from a newly discovered vulnerability is a difficult and manual process. Users or adminis-
trators must manually inspect the application for signs of an attack that exploited the vulnerability,

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP ’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . . $10.00.

and if an attack is found, they must track down the attacker’s actions and repair the damage by hand.
Worse yet, this time-consuming process provides no guarantees that every intrusion was found, or that
all changes by the attacker were reverted. As web applications take on more functionality of traditional
desktop applications, intrusion recovery for web applications will become increasingly important.

This paper presents WARP1, a system that automates repair from intrusions in web applications.
When an administrator learns of a security vulnerability in a web application, he or she can use
WARP to check whether that vulnerability was recently exploited, and to recover from any resulting
intrusions. Users and administrators can also use WARP to repair from configuration mistakes, such as
accidentally giving permissions to the wrong user. WARP works by continuously recording database
updates, and logging information about all actions, such as HTTP requests and database queries, along
with their input and output dependencies. WARP constructs a global dependency graph from this
logged information, and uses it to retroactively patch vulnerabilities by rolling back parts of the system
to an earlier checkpoint, fixing the vulnerability (e.g., patching a PHP file, or reverting unintended
permission changes), and re-executing any past actions that may have been affected by the fix. This
both detects any intrusions that exploited the vulnerability and reverts their effects.

To illustrate the extent of challenges facing WARP in recovering from intrusions in a web applica-
tion, consider the following worst-case attack on a company’s Wiki site that is used by both employees
and customers, where each user has privileges to edit only certain pages or documents. An attacker
logs into the Wiki site and exploits a cross-site scripting (XSS) vulnerability in the Wiki software
to inject malicious JavaScript code into one of the publicly accessible Wiki pages. When Alice, a
legitimate user, views that page, her browser starts running the attacker’s code, which in turn issues
HTTP requests to add the attacker to the access control list for every page that Alice can access, and
to propagate the attack code to some of those pages. The adversary now uses his new privileges to
further modify pages. In the meantime, legitimate users (including Alice) continue to access and edit
Wiki pages, including pages modified or infected by the attack.

Although the Retro system previously explored intrusion recovery for command-line workloads
on a single machine [14], WARP is the first system to repair from such attacks in web applications.
Recovering from intrusions such as the example above requires WARP to address three challenges not
answered by Retro, as follows.

First, recovering from an intrusion (e.g., in Retro) typically requires an expert administrator to
detect the compromise and to track down the source of the attack, by analyzing database entries
and web server logs. Worse yet, this process must be repeated every time a new security problem is
discovered, to determine if any attackers might have exploited the vulnerability.

Second, web applications typically handle data on behalf of many users, only a few of which may
have been affected by an attack. For a popular web application with many users, reverting all users’
changes since the attack or taking the application offline for repair is not an option.

Third, attacks can affect users’ browsers, making it difficult to track down the extent of the
intrusion purely on the server. In our example attack, when Alice (or any other user) visits an infected
Wiki page, the web server cannot tell if a subsequent page edit request from Alice’s browser was
caused by Alice or by the malicious JavaScript code. Yet an ideal system should revert all effects of
the malicious code while preserving any edits that Alice made from the same page in her browser.

To address these challenges, WARP builds on the rollback-and-reexecute approach to repair taken
by Retro, but solves a new problem—repair for distributed, web-based applications—using three novel
ideas. First, WARP allows administrators to retroactively apply security patches without having to
manually track down the source of each attack, or even having to decide whether someone already
exploited the newfound vulnerability. Retroactive patching works by re-executing past actions using
patched application code. If an action re-executes the same way as it did originally, it did not trigger
the vulnerability, and requires no further re-execution. Actions that re-execute differently on patched
application code could have been intrusions that exploited the original bug, and WARP repairs from
this potential attack by recursively re-executing any other actions that were causally affected.

Second, WARP uses a time-travel database to determine dependencies between queries, such as
finding the set of legitimate database queries whose results were influenced by the queries that an
adversary issued. WARP uses these dependencies to roll back just the affected parts of the database

1WARP stands for Web Application RePair.

during repair. Precise dependencies are crucial to minimize the amount of rollback and re-execution
during repair; otherwise, recovering from a week-old attack that affected just one user would still
require re-executing a week’s worth of work. Precise dependency analysis and rollback is difficult
because database queries operate on entire tables that contain information about all users, instead of
individual data objects related to a single user. WARP addresses this problem by partitioning tables on
popular lookup keys and using partitions to determine dependencies at a finer granularity than entire
database tables. By tracking multiple versions of a row, WARP can also perform repair concurrently
with the normal operation of the web application.

Third, to help users recover from attacks that involve client machines, such as cross-site scripting,
WARP performs DOM-level replay of user input. In our example, WARP’s repair process will first
roll back any database changes caused by Alice’s browser, then open a repaired (and presumably
no longer malicious) version of the Wiki page Alice visited, and replay the inputs Alice originally
provided to the infected page. Operating at the DOM level allows WARP to replay user input even if
the underlying page changed (e.g., the attack’s HTML and JavaScript is gone), and can often preserve
legitimate changes without any user input. WARP uses a client-side browser extension to record and
upload events to the server, and uses a browser clone on the server to re-execute them.

To evaluate our ideas in practice, we built a prototype of WARP, and ported MediaWiki, a
popular Wiki application, to run on WARP. We show that an administrator using WARP can fully
recover from six different attacks on MediaWiki, either by retroactively applying a security patch (for
software vulnerabilities), or by undoing a past action (for administrator’s mistakes). WARP requires
no application changes, incurs a 24–27% CPU and 2–3.2 GB/day storage cost on a single server, and
requires little user input.

In the rest of this paper, we start with an overview of WARP’s design and assumptions in §2.
We describe the key aspects of WARP’s design—retroactive patching, the time-travel database, and
browser re-execution—in §3, §4, and §5 respectively. §6 presents our prototype implementation, and
§7 explains how all parts of WARP fit together in the context of an example. We evaluate WARP in
§8, and compare it to related work in §9. §10 discusses WARP’s limitations and future work, and §11
concludes.

������� ���	
������ �

��������

����������
��

����

���
������ �

�
�������

�

����������
������
����

	���������

�������
� �������

���������	
����
��������	
����

!�
���
���������� ��

���
��

�

�
��
��
��
��
�

��
���

���
��

!�"� �������
� �������

�������

#�������

������
���

�������������������������
��

��������

���

����

��

������

���

����
�
�

������

���

����
�
�
���

����
!�
���
�
�

����
!�
���
�
�

����
!��
�

����
!!�

�
!!

Figure 1: Overview of WARP’s design. Components introduced or modified by WARP are shaded; compo-
nents borrowed from Retro are striped. Solid arrows are the original web application interactions that exist
without WARP. Dashed lines indicate interactions added by WARP for logging during normal execution, and
dotted lines indicate interactions added by WARP during repair.

2 OVERVIEW
The goal of WARP is to recover the integrity of a web application after it has been compromised by an
adversary. More specifically, WARP’s goal is to undo all changes made by the attacker to the system,
including all indirect effects of the attacker’s changes on legitimate actions of other users (e.g., through
cross-site scripting vulnerabilities), and to produce a system state as if all the legitimate changes still
occurred, but the adversary never compromised the application.

WARP’s workflow begins with the administrator deciding that he or she wants to make a retroactive
fix to the system, such as applying a security patch or changing a permission in the past. At a high

level, WARP then rolls back the system to a checkpoint before the intended time of the fix, applies the
fix, and re-executes actions that happened since that checkpoint, to construct a new system state. This
produces a repaired system state that would have been generated if all of the recorded actions happened
on the fixed system in the first place. If some of the recorded actions exploited a vulnerability that the
fix prevents, those actions will no longer have the same effect in the repaired system state, effectively
undoing the attack.

If the application is non-deterministic, there may be many possible repaired states, and WARP only
guarantees to provide one of them, which may not necessarily be the one closest to the pre-repair state.
In other words, non-deterministic changes unrelated to the attack may appear as a result of repair, and
non-determinism may increase the number of actions re-executed during repair, but the repaired state
is guaranteed to be free of effects of attack actions. Also, due to changes in system state during repair,
some of the original actions may no longer make sense during replay, such as when a user edits a Wiki
page created by the attacker and that page no longer exists due to repair. These actions are marked as
conflicts and WARP asks the user for help in resolving them.

WARP cannot undo disclosures of private data, such as if an adversary steals sensitive information
from Wiki pages, or steals a user’s password. However, when private data is leaked, WARP can still
help track down affected users. Additionally, in the case of stolen credentials, administrators can
use WARP to retroactively change the passwords of affected users (at the risk of undoing legitimate
changes), or revert just the attacker’s actions, if they can identify the attacker’s IP address.

The rest of this section first provides a short review of Retro, and then discusses how WARP builds
on the ideas from Retro to repair from intrusions in web applications, followed by a summary of the
assumptions made by WARP.

2.1 Review of Retro
Repairing from an intrusion in Retro, which operates at the operating system level, involves five steps.
First, during normal execution, Retro records a log of all system calls and periodically checkpoints the
file system. Second, the administrator must detect the intrusion, and track down the initial attack action
(such as a user accidentally running a malware binary). Third, Retro rolls back the files affected by the
attack to a checkpoint before the intrusion. Fourth, Retro re-executes legitimate processes that were
affected by the rolled-back file (e.g., any process that read the file in the past), but avoids re-executing
the attack action. Finally, to undo indirect effects of the attack, Retro finds any other processes whose
inputs may have changed as a result of re-execution, rolls back any files they modified, and recursively
re-executes them too.

A naı̈ve system that re-executed every action since the attack would face two challenges. First,
re-execution is expensive: if the attack occurred a week ago, re-executing everything may take
another week. Second, re-execution may produce different results, for reasons that have nothing to
do with the attack (e.g., because some process is non-deterministic). A different output produced by
one process can lead to a conflict when Retro tries to re-execute subsequent processes, and would
require user input to resolve. For example, re-executing sshd can generate a different key for an ssh
connection, which makes it impossible to replay that connection’s network packets. Thus, while Retro
needs some processes to produce different outputs (e.g., to undo the effects of an attack), Retro also
needs to minimize re-execution in order to minimize conflicts that require user input, and to improve
performance.

To reduce re-execution, Retro checks for equivalence of inputs to a process before and after repair,
to decide whether to re-execute a process. If the inputs to a process during repair are identical to the
inputs originally seen by that process, Retro skips re-execution of that process. Thus, even if some of
the files read by a process may have been changed during repair, Retro need not re-execute a process
that did not read the changed parts of the file.

Retro’s design separates the overall logic of rollback, repair, and recursive propagation (the
repair controller) from the low-level details of file system rollback and process re-execution (handled
by individual repair managers). During normal execution, managers record information about
checkpoints, actions, and dependencies into a global data structure called an action history graph, and
periodically garbage-collect old checkpoints and action history graph entries. A node in the action
history graph logically represents the history of some part of the system over time, such as all versions
of a certain file or directory. The action history graph also contains actions, such as a process executing

for some period of time or issuing a system call. An action has dependencies to and from nodes at a
specific time, indicating the versions of a node that either influenced or were influenced by that action.
During repair, the repair controller consults the action history graph, and invokes the managers as
needed for rollback and re-execution. We refer the reader to Kim et al. [14] for further details.

2.2 Repairing web applications
WARP builds on Retro’s repair controller to repair from intrusions in web applications. Figure 1
illustrates WARP’s design, and its relation to components borrowed from Retro (in particular, the repair
controller, and the structure of the action history graph). WARP’s design involves the web browser,
HTTP server, application code, and database. Each of these four components corresponds to a repair
manager in WARP, which records enough information during normal operation to perform rollback
and re-execution during repair.

To understand how WARP repairs from an attack, consider the example scenario we presented in
§1, where an attacker uses a cross-site scripting attack to inject malicious JavaScript code into a Wiki
page. When Alice visits that page, her browser runs the malicious code, and issues HTTP requests
to propagate the attack to another page and to give the attacker access to Alice’s pages. The attacker
then uses his newfound access to corrupt some of Alice’s pages. In the meantime, other users continue
using the Wiki site: some users visit the page containing the attack code, other users visit and edit
pages corrupted by the attack, and yet other users visit unaffected pages.

Some time after the attack takes place, the administrator learns that a cross-site scripting vulnerabil-
ity was discovered by the application’s developers, and a security patch for one of the source files—say,
calendar.php—is now available. In order to retroactively apply this security patch, WARP first
determines which runs of the application code may have been affected by a bug in calendar.php.
WARP then applies the security patch to calendar.php, and considers re-executing all potentially
affected runs of the application. In order to re-execute the application, WARP records sufficient
information during the original execution2 about all of the inputs to the application, such as the HTTP
request. To minimize the chance that the application re-executes differently for reasons other than the
security patch, WARP records and replays the original return values from non-deterministic function
calls. §3 discusses how WARP implements retroactive patching in more detail.

Now consider what happens when WARP re-executes the application code for the attacker’s
initial request. Instead of adding the attacker’s JavaScript code to the Wiki page as it did during the
original execution, the newly patched application code will behave differently (e.g., pass the attacker’s
JavaScript code through a sanitization function), and then issue an SQL query to store the resulting
page in the database. This SQL query must logically replace the application’s original query that
stored an infected page, so WARP first rolls back the database to its state before the attack took place.

After the database has been rolled back, and the new query has executed, WARP must determine
what other parts of the system were affected by this changed query. To do this, during original
execution WARP records all SQL queries, along with their results. During repair, WARP re-executes
any queries it determines may have been affected by the changed query. If a re-executed query produces
results different from the original execution, WARP re-executes the corresponding application run as
well, such as Alice’s subsequent page visit to the infected page. §4 describes the design of WARP’s
time-travel database in more detail, including how it determines query dependencies, how it re-executes
queries in the past, and how it minimizes rollback.

When the application run for Alice’s visit to the infected page is re-executed, it generates a
different HTTP response for Alice’s browser (with the attack now gone). WARP must now determine
how Alice’s browser would behave given this new page. Simply undoing all subsequent HTTP requests
from Alice’s browser would needlessly undo all of her legitimate work, and asking Alice to manually
check each HTTP request that her browser made is not practical either. To help Alice recover from
such attacks, WARP provides a browser extension that records all events for each open page in her
browser (such as HTTP requests and user input) and uploads this information to the server. If WARP
determines that her browser may have been affected by an attack, it starts a clone of her browser on the
server, and re-executes her original input on the repaired page, without having to involve her. Since
Alice’s re-executed browser will no longer issue the HTTP requests from the XSS attack, WARP will

2We use the terms “original execution” and “normal execution” interchangeably.

recursively undo the effects of those requests as well. §5 explains how WARP’s browser extension
works in more detail.

If a user’s actions depend on changes by the attacker, WARP may be unable to replay the user’s
original inputs in the browser clone. For example, if the attacker created a new Wiki page, and a
curious user subsequently edited that page, WARP will not be able to re-execute the user’s actions
once the attack is undone. In this case, WARP signals a conflict and asks the user (or administrator) to
resolve it. WARP cannot rely on users being always online, so WARP queues the conflict, and proceeds
with repair.

When the user next logs in, WARP redirects the user to a conflict resolution page. To resolve a
conflict, the user is presented with the original page they visited, the newly repaired version of that
page, and the original action that the server is unable to replay on the new page, and is asked to specify
what actions they would like to perform instead. For example, the user can ask WARP to cancel that
page visit altogether. Users or administrators can also use the same mechanism to undo their own
actions from the past, such as if an administrator accidentally gave administrative privileges to a user.
§5 further discusses WARP’s handling of conflicts and user-initiated undo.

2.3 Assumptions
To recover from intrusions, WARP makes two key assumptions. First, WARP assumes that the adversary
does not exploit any vulnerabilities in the HTTP server, database, or the application’s language runtime,
does not cause the application code to execute arbitrary code (e.g., spawning a Unix shell), and does
not corrupt WARP’s log. Most web application vulnerabilities fall into this category [10], and §8 shows
how WARP can repair from common attacks such as cross-site scripting, SQL injection, cross-site
request forgery, and clickjacking.

Second, to recover from intrusions that involve a user’s browser, our prototype requires the user to
install a browser extension that uploads dependency information to WARP-enabled web servers. In
principle, the same functionality could be performed purely in JavaScript (see §10), but for simplicity,
our prototype uses a separate extension. WARP’s server trusts each browser’s log information only
as much as it trusts the browser’s HTTP requests. This ensures that a malicious user cannot gain
additional privileges by uploading a log containing user input that tries to issue different HTTP
requests.

If one user does not have our prototype’s extension installed, but gets compromised by a cross-site
scripting attack, WARP will not be able to precisely undo the effects of malicious JavaScript code in
that user’s browser. As a result, server-side state accessible to that user (e.g., that user’s Wiki pages or
documents) may remain corrupted. However, WARP will still inform the user that his or her browser
might have received a compromised reply from the server in the past. At that point, the user can
manually inspect the set of changes made to his data from that point onward, and cancel his or her
previous HTTP requests, if unwanted changes are detected.

3 RETROACTIVE PATCHING
To implement retroactive patching, WARP’s application repair manager must be able to determine
which runs of an application may have been affected by a given security patch, and to re-execute them
during repair. To enable this, WARP’s application repair manager interposes on the application’s lan-
guage runtime (PHP in our current prototype) to record any dependencies to and from the application,
including application code loaded at runtime, queries issued to the database, and HTTP requests and
responses sent to or from the HTTP server.

3.1 Normal execution
During normal execution, the application repair manager records three types of dependencies for the
executing application code (along with the dependency’s data, used later for re-execution). First, the
repair manager records an input dependency to the HTTP request and an output dependency to the
HTTP response for this run of the application code (along with all headers and data). Second, for each
read or write SQL query issued by the application, the repair manager records, respectively, input or
output dependencies to the database. Third, the repair manager records input dependencies on the
source code files used by the application to handle its specific HTTP request. This includes the initial

PHP file invoked by the HTTP request, as well as any additional PHP source files loaded at runtime
through require or include statements.

In addition to recording external dependencies, WARP’s application manager also records certain
internal functions invoked by the application code, to reduce non-determinism during re-execution.
This includes calls to functions that return the current date or time, functions that return randomness
(such as mt rand in PHP), and functions that generate unique identifiers for HTTP sessions (such as
session start in PHP). For each of these functions, the application manager records the arguments
and return value. This information is used to avoid re-executing these non-deterministic functions
during repair, as we will describe shortly.

3.2 Initiating repair
To initiate repair through retroactive patching, the administrator needs to provide the filename of
the buggy source code file, a patch to that file which removes the vulnerability, and a time at which
this patch should be applied (by default, the oldest time available in WARP’s log). In response, the
application repair manager adds a new action to WARP’s action history graph, whose re-execution
would apply the patch to the relevant file at the specified (past) time. The application repair manager
then requests that WARP’s repair controller re-execute the newly synthesized action. WARP will first
re-execute this action (i.e., apply the patch to the file in question), and then use dependencies recorded
by the application repair manager to find and re-execute all runs of the application that loaded the
patched source code file.

3.3 Re-execution
During re-execution, the application repair manager invokes the application code in much the same
way as during normal execution, with two differences. First, all inputs and outputs to and from the
application are handled by the repair controller. This allows the repair controller to determine when
re-execution is necessary, such as when a different SQL query is issued during repair, and to avoid
re-executing actions that are not affected or changed.

Second, the application repair manager tries to match up calls to non-deterministic functions during
re-execution with their counterparts during the original run. In particular, when a non-deterministic
function is invoked during re-execution, the application repair manager searches for a call to the same
function, from the same caller location. If a match is found, the application repair manager uses the
original return value in lieu of invoking the function. The repair manager matches non-deterministic
function calls from the same call site in-order (i.e., two non-deterministic function calls that happened
in some order during re-execution will always be matched up to function calls in that same order
during the original run).

One important aspect of this heuristic is that it is strictly an optimization. Even if the heuristic
fails to match up any of the non-deterministic function calls, the repair process will still be correct,
at the cost of increased re-execution (e.g., if the application code generates a different HTTP cookie
during re-execution, WARP will be forced to re-execute all page visits that used that cookie).

4 TIME-TRAVEL DATABASE
The job of WARP’s time-travel database is to checkpoint and roll back the application’s persistent data,
and to re-execute past SQL queries during repair. Its design is motivated by two requirements: first,
the need to minimize the number of SQL queries that have to be re-executed during repair, and second,
the need to repair a web application concurrently with normal operation. This section discusses how
WARP addresses these requirements.

4.1 Reducing re-execution
Minimizing the re-execution of SQL queries during repair is complicated by the fact that clients issue
queries over entire tables, and tables often contain data for many independent users or objects of the
same type.

There are two reasons why WARP may need to re-execute an SQL query. First, an SQL query
that modifies the database (e.g., an INSERT, UPDATE, or DELETE statement) needs to be re-executed in
order to re-apply legitimate changes to a database after rollback. Second, an SQL query that reads the

database (e.g., a SELECT statement, or any statement with a WHERE clause) needs to be re-executed if
the data read by that statement may have changed as a result of repair.

To minimize re-execution of write SQL queries, the database manager performs fine-grained
rollback, at the level of individual rows in a table. This ensures that, if one row is rolled back, it may
not be necessary to re-execute updates to other rows in the same table. One complication lies in the
fact that SQL has no inherent way of naming unique rows in a database. To address this limitation,
WARP introduces the notion of a row ID, which is a unique name for a row in a table. Many web
applications already use synthetic primary keys which can serve as row IDs; in this case, WARP uses
that primary key as a row ID in that table. If a table does not already have a suitable row ID column,
WARP’s database manager transparently adds an extra row id column for this purpose.

To minimize re-execution of SQL queries that read the database, the database manager logically
splits the table into partitions, based on the values of one or more of the table’s columns. During
repair, the database manager keeps track of the set of partitions that have been modified (as a result of
either rollback or re-execution), and avoids re-executing SQL queries that read from only unmodified
partitions. To determine the partitions read by an SQL query, the database manager inspects the
query’s WHERE clause. If the database manager cannot determine what partitions a query might read
based on the WHERE clause, it conservatively assumes that the query reads all partitions.

In our current prototype, the programmer or administrator must manually specify the row ID
column for each table (if they want to avoid the overhead of an extra row id column created by
WARP), and the partitioning columns for each table (if they want to benefit from the partitioning
optimization). A partitioning column need not be the same column as the row ID. For example, a
Wiki application may store Wiki pages in a table with four columns: a unique page ID, the page title,
the user ID of the last user who edited the page, and the contents of that Wiki page. Because the
title, the last editor’s user ID, and the content of a page can change, the programmer would specify
the immutable page ID as the row ID column. However, the application’s SQL queries may access
pages either by their title or by the last editor’s user ID, so the programmer would specify them as the
partitioning columns.

4.2 Re-executing multi-row queries
SQL queries can access multiple rows in a table at once, if the query’s WHERE clause does not guarantee
a unique row. Re-executing such queries—where WARP cannot guarantee by looking at the WHERE
clause that only a single row is involved—poses two challenges. First, in the case of a query that
may read multiple rows, WARP must ensure that all of those rows are in the correct state prior to
re-executing that query. For instance, if some of those rows have been rolled back to an earlier
version due to repair, but other rows have not been rolled back since they were not affected, naı̈vely
re-executing the multi-row query can produce incorrect results, mixing data from old and new rows.
Second, in the case of a query that may modify multiple rows, WARP must roll back all of those rows
prior to re-executing that query, and subsequently re-execute any queries that read those rows.

To re-execute multi-row read queries, WARP performs continuous versioning of the database, by
keeping track of every value that ever existed for each row. When re-executing a query that accesses
some rows that have been rolled back, and other rows that have not been touched by repair, WARP
allows the re-executed query to access the old value of the untouched rows from precisely the time that
query originally ran. Thus, continuous versioning allows WARP’s database manager to avoid rolling
back and reconstructing rows for the sole purpose of re-executing a read query on their old value.

To re-execute multi-row write queries, WARP performs two-phase re-execution by splitting the
query into two parts: the WHERE clause, and the actual write query. During normal execution, WARP
records the set of row IDs of all rows affected by a write query. During re-execution, WARP first
executes a SELECT statement to obtain the set of row IDs matching the new WHERE clause. These row
IDs correspond to the rows that would be modified by this new write query on re-execution. WARP
uses continuous versioning to precisely roll back both the original and new row IDs to a time just
before the write query originally executed. It then re-executes the write query on this rolled-back
database.

To implement continuous versioning, WARP augments every table with two additional columns,
start time and end time, which indicate the time interval during which that row value was valid.
Each row R in the original table becomes a series of rows in the continuously versioned table, where

the end time value of one version of R is the start time value of the next version of R. The column
end time can have the special value∞, indicating that row version is the current value of R. During
normal execution, if an SQL query modifies a set of rows, WARP sets end time for the modified
rows to the current time, with the rest of the columns retaining their old values, and inserts a new
set of rows with start time set to the current time, end time set to∞, and the rest of the columns
containing the new versions of those rows. When a row is deleted, WARP simply sets end time to
the current time. Read queries during normal execution always access rows with end time = ∞.
Rolling back a row to time T involves deleting versions of the row with start time ≥ T and setting
end time←∞ for the version with the largest remaining end time.

Since WARP’s continuous versioning database grows in size as the application makes modifications,
the database manager periodically deletes old versions of rows. Since repair requires that both the
old versions of database rows and the action history graph be available for rollback and re-execution,
the database manager deletes old rows in sync with WARP’s garbage-collection of the action history
graph.

4.3 Concurrent repair and normal operation
Since web applications are often serving many users, it’s undesirable to take the application offline
while recovering from an intrusion. To address this problem, WARP’s database manager introduces the
notion of repair generations, identified by an integer counter, which are used to denote the state of the
database after a given number of repairs. Normal execution happens in the current repair generation.
When repair is initiated, the database manager creates the next repair generation (by incrementing
the current repair generation counter by one), which creates a fork of the current database contents.
All database operations during repair are applied to the next generation. If, during repair, users make
changes to parts of the current generation that are being repaired, WARP will re-apply the users’
changes to the next generation through re-execution. Changes to parts of the database not under repair
are copied verbatim into the next generation. Once repair is near completion, the web server is briefly
suspended, any final requests are re-applied to the next generation, the current generation is set to the
next generation, and the web server is resumed.

To implement repair generations, WARP augments all tables with two additional columns,
start gen and end gen, which indicate the generations in which a row is valid. Much as with
continuous versioning, end gen =∞ indicates that the row has not been superseded in any later gen-
eration. During normal execution, queries execute over rows that match start gen ≤ current and
end gen ≥ current . During repair, if a row with start gen < next and end gen ≥ next is about
to be updated or deleted (due to either re-execution or rollback), the existing row’s end gen is set to
current , and, in case of updates, the update is executed on a copy of the row with start gen = next .

4.4 Rewriting SQL queries
WARP intercepts all SQL queries made by the application, and transparently rewrites them to implement
database versioning and generations. For each query, WARP determines the time and generation in
which the query should execute. For queries issued as part of normal execution, WARP uses the current
time and generation. For queries issued as part of repair, WARP’s repair controller explicitly specifies
the time for the re-executed query, and the query always executes in the next generation.

To execute a SELECT query at time T in generation G, WARP restricts the query to run over
currently valid rows by augmenting its WHERE clause with AND start time ≤ T ≤ end time AND

start gen ≤ G ≤ end gen.
During normal execution, on an UPDATE or DELETE query at time T (the current time), WARP

implements versioning by making a copy of the rows being modified. To do this, WARP sets the
end time of rows being modified in the current generation to T , and inserts copies of the rows with
start time ← T , end time ← ∞, start gen ← G, and end gen ← ∞, where G = current .
WARP also restricts the WHERE clause of such queries to run over currently valid rows, as with SELECT
queries above. On an INSERT query, WARP sets start time, end time, start gen, and end gen
columns of the inserted row as for UPDATE and DELETE queries above.

To execute an UPDATE or DELETE query during repair at time T , WARP must first preserve any
rows being modified that are also accessible from the current generation, so that they continue to be
accessible to concurrently executing queries in the current generation. To do so, WARP creates a copy

of all matching rows, with end gen set to current , sets the start gen of the rows to be modified
to next , and then executes the UPDATE or DELETE query as above, except in generation G = next .
Executing an INSERT query during repair does not require preserving any existing rows; in this case,
WARP simply performs the same query rewriting as for normal execution, with G = next .

5 BROWSER RE-EXECUTION
To help users recover from attacks that took place in their browsers, WARP uses two ideas. First, when
WARP determines that a past HTTP response was incorrect, it re-executes the changed web page in
a cloned browser on the server, in order to determine how that page would behave as a result of the
change. For example, if a new HTTP response no longer contains an adversary’s JavaScript code
(e.g., because the cross-site scripting vulnerability was retroactively patched), re-executing the page in
a cloned browser will not generate the HTTP requests that the attacker’s JavaScript code may have
originally initiated, and will thus allow WARP to undo those requests.

Second, WARP performs DOM-level replay of user input when re-executing pages in a browser.
By recording and re-executing user input at the level of the browser’s DOM, WARP can better capture
the user’s intent as to what page elements the user was trying to interact with. A naı̈ve approach that
recorded pixel-level mouse events and key strokes may fail to replay correctly when applied to a page
whose HTML code has changed slightly. On the other hand, DOM elements are more likely to be
unaffected by small changes to an HTML page, allowing WARP to automatically re-apply the user’s
original inputs to a modified page during repair.

5.1 Tracking page dependencies
In order to determine what should be re-executed in the browser given some changes on the server,
WARP needs to be able to correlate activity on the server with activity in users’ browsers.

First, to correlate requests coming from the same web browser, WARP’s browser extension assigns
each client a unique client ID value. The client ID also helps WARP keep track of log information
uploaded to the server by different clients. The client ID is a long random value to ensure that an
adversary cannot guess the client ID of a legitimate user and upload logs on behalf of that user.

Second, WARP also needs to correlate different HTTP requests coming from the same page in a
browser. To do this, WARP introduces the notion of a page visit, corresponding to the period of time
that a single web page is open in a browser frame (e.g., a tab, or a sub-frame in a window). If the
browser loads a new page in the same frame, WARP considers this to be a new visit (regardless of
whether the frame navigated to a different URL or to the same URL), since the frame’s page starts
executing in the browser anew. In particular, WARP’s browser extension assigns each page visit a
visit ID, unique within a client. Each page visit can also have a dependency on a previous page visit.
For example, if the user clicks on a link as part of page visit #1, the browser extension creates page
visit #2, which depends on page visit #1. This allows WARP to check whether page visit #2 needs to
re-execute if page visit #1 changes. If the user clicks on more links, and later hits the back button to
return to the page from visit #2, this creates a fresh page visit #N (for the same page URL as visit #2),
which also depends on visit #1.

Finally, WARP needs to correlate HTTP requests issued by the web browser with HTTP requests
received by the HTTP server, for tracking dependencies. To do this, the WARP browser extension
assigns each HTTP request a request ID, unique within a page visit, and sends the client ID, visit ID,
and request ID along with every HTTP request to the server via HTTP headers.

On the server side, the HTTP server’s manager records dependencies between HTTP requests
and responses (identified by a 〈client id , visit id , request id〉 tuple) and runs of application code
(identified by a 〈pid , count〉 tuple, where pid is the PID of the long-lived PHP runtime process, and
count is a unique counter identifying a specific run of the application).

5.2 Recording events
During normal execution, the browser extension performs two tasks. First, it annotates all HTTP
requests, as described above, with HTTP headers to help the server correlate client-side actions with
server-side actions. Second, it records all JavaScript events that occur during each page visit (including
timer events, user input events, and postMessage events). For each event, the extension records event

parameters, including time and event type, and the XPath of the event’s target DOM element, which
helps perform DOM-level replay during repair.

The extension uploads its log of JavaScript events for each page visit to the server, using a separate
protocol (tagged with the client ID and visit ID). On the server side, WARP’s HTTP server records the
submitted information from the client into a separate per-client log, which is subject to its own storage
quota and garbage-collection policy. This ensures that a single client cannot monopolize log space on
the server, and more importantly, cannot cause a server to garbage-collect recent log entries from other
users needed for repair.

Although the current WARP prototype implements client-side logging using an extension, the
extension does not circumvent any of the browser’s privacy policies. All of the information recorded
by WARP’s browser extension can be captured at the JavaScript level by event handlers, and in future
work, we hope to implement an extension-less version of WARP’s browser logging by interposing on
all events using JavaScript rewriting.

5.3 Server-side re-execution
When WARP determines that an HTTP response changed during repair, the browser repair manager
spawns a browser on the server to re-execute the client’s uploaded browser log for the affected page
visit. This re-execution browser loads the client’s HTTP cookies, loads the same URL as during
original execution, and replays the client’s original DOM-level events. The user’s cookies are loaded
either from the HTTP server’s log, if re-executing the first page for a client, or from the last browser
page re-executed for that client. The re-executed browser runs in a sandbox, and only has access to
the client’s HTTP cookie, ensuring that it gets no additional privileges despite running on the server.
To handle HTTP requests from the re-executing browser, the HTTP server manager starts a separate
copy of the HTTP server, which passes any HTTP requests to the repair controller, as opposed to
executing them directly. This allows the repair controller to prune re-execution for identical requests
or responses.

During repair, WARP uses a re-execution extension in the server-side browser to replay the events
originally recorded by the user’s browser. For each event, the re-execution extension tries to locate the
appropriate DOM element using its XPath. For keyboard input events into text fields, the re-execution
extension performs a three-way text merge between the original value of the text field, the new value
of the text field during repair, and the user’s original keyboard input. For example, this allows the
re-execution extension to replay the user’s changes to a text area when editing a Wiki page, even if the
Wiki page in the text area is somewhat different during repair.

If, after repair, a user’s HTTP cookie in the cloned browser differs from the user’s cookie in his or
her real browser (based on the original timeline), WARP queues that client’s cookie for invalidation,
and the next time the same client connects to the web server (based on the client ID), the client’s
cookie will be deleted. WARP assumes that the browser has no persistent client-side state aside from
the cookie. Repair of other client-side state could be similarly handled at the expense of additional
logging and synchronization.

5.4 Conflicts
During repair, the server-side browser extension may fail to re-execute the user’s original inputs, if the
user’s actions somehow depended on the reverted actions of the attacker. For example, in the case of a
Wiki page, the user may have inadvertently edited a part of the Wiki page that the attacker modified.
In this situation, WARP’s browser repair manager signals a conflict, stops re-execution of that user’s
browser, and requires the user (or an administrator, in lieu of the user) to resolve the conflict.

Since users are not always online, WARP queues the conflict for later resolution, and proceeds
with repair, assuming, for now, that subsequent requests from that user’s browser do not change. When
the user next logs into the web application (based on the client ID), the application redirects the user
to a conflict resolution page, which tells the user about the page on which the conflict arose, and the
user’s input which could not be replayed. The user must then indicate how the conflict should be
resolved. For example, the user can indicate that they would like to cancel the conflicted page visit
altogether (i.e., undo all of its HTTP requests), and apply the legitimate changes (if any) to the current
state of the system by hand.

Component Lines of code
Firefox extension 2,000 lines of JavaScript / HTML
Apache logging module 900 lines of C
PHP runtime / SQL rewriter 1,400 lines of C and PHP
PHP re-execution support 200 lines of Python
Repair managers: 4,300 lines of Python, total

Retro’s repair controller 400 lines of Python
PHP manager 800 lines of Python
Apache manager 300 lines of Python
Database manager 1,400 lines of Python and PHP
Firefox manager 400 lines of Python
Retroactive patching manager 200 lines of Python
Others 800 lines of Python

Table 1: Lines of code for different components of the WARP prototype, excluding blank lines and comments.

While WARP’s re-execution extension flags conflicts that arise during replay of input from the user,
some applications may have important information that must be correctly displayed to the user. For
example, if an online banking application displayed $1,000 as the user’s account balance during the
original execution, but during repair it is discovered that the user’s balance should have been $2,000,
WARP will not raise a re-execution conflict. An application programmer, however, can provide a UI
conflict function, which, given the old and new versions of a web page, can signal a conflict even if all
of the user input events replay correctly. For the example applications we evaluated with WARP, we
did not find the need to implement such conflict functions.

5.5 User-initiated repair
In some situations, users or administrators may want to undo their own past actions. For example, an
administrator may have accidentally granted administrative privileges to a user, and later may want to
revert any actions that were allowed due to this mis-configuration. To recover from this mistake, the
administrator can use WARP’s browser extension to specify a URL of the page on which the mistake
occurred, find the specific page visit to that URL which led to the mistake, and request that the page
visit be canceled. Our prototype does not allow replacing one past action with another, although this is
mostly a UI limitation.

Allowing users to undo their own actions runs the risk of creating more conflicts, if other users’
actions depended on the action in question. To prevent cascading conflicts, WARP prohibits a regular
user (as opposed to an administrator) from initiating repair that causes conflicts for other users. WARP’s
repair generation mechanism allows WARP to try repairing the server-side state upon user-initiated
repair, and to abort the repair if any conflicts arise. The only exception to this rule is if the user’s repair
is a result of a conflict being reported to that user on that page, in which case the user is allowed to
cancel all actions, even if it propagates a conflict to another user.

6 IMPLEMENTATION
We have implemented a prototype of WARP which builds on Retro. Our prototype works with the
Firefox browser on the client, and Apache, PostgreSQL, and PHP on the server. Table 1 shows the
lines of code for the different components of our prototype.

Our Firefox extension intercepts all HTTP requests during normal execution and adds WARP’s
client ID, visit ID, and request ID headers to them. It also intercepts all browser frame creations, and
adds an event listener to the frame’s window object. This event listener gets called on every event in
the frame, and allows us to record the event. During repair, the re-execution extension tries to match
up HTTP requests with requests recorded during normal execution, and adds the matching request ID
header when a match is found. Our current conflict resolution UI only allows the user to cancel the
conflicting page visit; other conflict resolutions must be performed by hand. We plan to build a more
comprehensive UI, but canceling has been sufficient for now.

In our prototype, the user’s client-side browser and the server’s re-execution browser use the
same version of Firefox. While this has simplified the development of our extension, we expect that
DOM-level events are sufficiently standardized in modern browsers that it would be possible to replay

events across different browsers, such as recent versions of Firefox and Chrome. We have not verified
this to date, however.

Our time-travel database and repair generations are implemented on top of PostgreSQL using
SQL query rewriting. After the application’s database tables are installed, WARP extends the schema
of all the tables to add its own columns, including row id if no existing column was specified as the
row ID by the programmer. All database queries are rewritten to update these columns appropriately
when the rows are modified. The approach of using query rewriting was chosen to avoid modifying
the internals of the Postgres server, although an implementation inside of Postgres would likely have
been more efficient.

To allow multiple versions of a row from different times or generations to exist in the same table,
WARP modifies database uniqueness constraints and primary keys specified by the application to
include the end ts and end gen columns. While this allows multiple versions of the same row over
time to co-exist in the same table, WARP must now detect dependencies between queries through
uniqueness violations. In particular, WARP checks whether the success (or failure) of each INSERT
query would change as a result of other rows inserted or deleted during repair, and rolls back that row
if so. WARP needs to consider INSERT statements only for partitions under repair. Our time-travel
database implementation does not support foreign keys, so it disables them. We plan to implement
foreign key constraints in the future in a database trigger. Our design is compatible with multi-
statement transactions; however, our current implementation does not support them, and we did not
need them for our current applications.

WARP extends Apache’s PHP module to log HTTP requests that invoke PHP scripts. WARP inter-
cepts a PHP script’s calls to database functions, mt rand, date and time functions, and session start,
by rewriting all scripts to call a wrapper function that invokes the wrapped function and logs the
arguments and results.

7 PUTTING IT ALL TOGETHER
We now illustrate how different components of WARP work together in the context of a simple Wiki
application. In this case, no attack takes place, but most of the steps taken by WARP remain the same
as in a case with an attack.

Consider a user who, during normal execution, clicks on a link to edit a Wiki page. The user’s
browser issues an HTTP request to edit.php. WARP’s browser extension intercepts this request, adds
client ID, visit ID, and request ID HTTP headers to it, and records the request in its log (§5.1). The
web server receives this request and dispatches it to WARP’s PHP module. The PHP module assigns
this request a unique server-side request ID, records the HTTP request information along with the
server-side request ID, and forwards the request to the PHP runtime.

As WARP’s PHP runtime executes edit.php, it intercepts three types of operations. First, for
each non-deterministic function call, it records the arguments and the return value (§3.1). Second, for
each operation that loads an additional PHP source file, it records the file name (§3.1). Third, for each
database query, it records the query, rewrites the query to implement WARP’s time-travel database,
and records the result set and the row IDs of all rows modified by the query (§4).

Once edit.php completes execution, the response is recorded by the PHP module and returned
to the browser. When the browser loads the page, WARP’s browser extension attaches handlers to
intercept user input, and records all intercepted actions in its log (§5.2). The WARP browser extension
periodically uploads its log to the server.

When a patch fixing a vulnerability in edit.php becomes available, the administrator instructs
WARP to perform retroactive patching. The WARP repair controller uses the action history graph to
locate all PHP executions that loaded edit.php and queues them for re-execution; the user edit action
described above would be among this set.

To re-execute this page in repair mode, the repair controller launches a browser on the server,
identical to the user’s browser, and instructs it to replay the user session. The browser re-issues the
same requests, and the WARP browser extension assigns the same IDs to the request as during normal
execution (§5.3). The WARP PHP module forwards this request to the repair controller, which launches
WARP’s PHP runtime to re-execute it.

During repair, the PHP runtime intercepts two types of operations. For non-deterministic function
calls, it checks whether the same function was called during the original execution, and if so, re-uses
the original return value (§3.3). For database queries, it forwards the query to the repair controller for
re-execution.

To re-execute a database query, the repair controller determines the rows and partitions that the
query depends on, rolls them back to the right version (for a write operation), rewrites the query to
support time-travel and generations, executes the resulting query, and returns the result to the PHP
runtime (§4).

After a query re-executes, the repair controller uses the action history graph to find other database
queries that depended on the partitions affected by the re-executed query (assuming it was a write).
For each such query, the repair controller checks whether their return values would now be different.
If so, it queues the page visits that issued those queries for re-execution.

After edit.php completes re-execution, the HTTP response is returned to the repair controller,
which forwards it to the re-executing browser via the PHP module. Once the response is loaded in the
browser, the WARP browser extension replays the original user inputs on that page (§5.3). If conflicts
arise, WARP flags them for manual repair (§5.4).

WARP’s repair controller continues repairing pages in this manner until all affected pages are
re-executed. Even though no attack took place in this example, this re-execution algorithm would
repair from any attack that exploited the vulnerability in edit.php.

8 EVALUATION
In evaluating WARP, we answer several questions. §8.1 shows what it takes to port an existing web
application to WARP. §8.2 shows what kinds of attacks WARP can repair from, what attacks can
be detected and fixed with retroactive patching, how much re-execution may be required, and how
often users need to resolve conflicts. §8.3 shows the effectiveness of WARP’s browser re-execution in
reducing user conflicts. §8.4 compares WARP with the state-of-the-art work in data recovery for web
applications [1]. Finally, §8.5 measures WARP’s runtime cost.

We ported a popular Wiki application, MediaWiki [21], to use WARP, and used several previously
discovered vulnerabilities to evaluate how well WARP can recover from intrusions that exploit those
bugs. The results show that WARP can recover from six common attack types, that retroactive patching
detects and repairs all tested software bugs, and that WARP’s techniques reduce re-execution and user
conflicts. WARP’s overheads are 24–27% in throughput and 2–3.2 GB/day of storage.

8.1 Application changes
We did not make any changes to MediaWiki source code to port it to WARP. To choose row IDs for
each MediaWiki table, we picked a primary or unique key column whose value MediaWiki assigns
once during creation of a row and never overwrites. If there is no such column in a table, WARP adds
a new row id column to the table, transparent to the application. We chose partition columns for each
table by analyzing the typical queries made by MediaWiki and picking the columns that are used in
the WHERE clauses of a large number of queries on that table. In all, this required a total of 89 lines of
annotation for MediaWiki’s 42 tables.

8.2 Recovery from attacks
To evaluate how well WARP can recover from intrusions, we constructed six worst-case attack scenarios
based on five recent vulnerabilities in MediaWiki and one configuration mistake by the administrator,
shown in Table 2. After each attack, users browse the Wiki site, both reading and editing Wiki pages.
Our scenarios purposely create significant interaction between the attacker’s changes and legitimate
users, to stress WARP’s recovery aspects. If WARP can disentangle these challenging attacks, it can
also handle any simpler attack.

In the stored XSS attack, the attacker injects malicious JavaScript code into a MediaWiki page.
When a victim visits that Wiki page, the attacker’s JavaScript code appends text to a second Wiki page
that the victim has access to, but the attacker does not. The SQL injection and reflected XSS attacks
are similar in design. Successful recovery from these three attacks requires deleting the attacker’s
JavaScript code; detecting what users were affected by that code; undoing the effects of the JavaScript
code in their browsers (i.e., undoing the edits to the second page); verifying that the appended text

did not cause browsers of users that visited the second page to misbehave; and preserving all users’
legitimate actions.

The CSRF attack is a login CSRF attack, where the goal of the attacker is to trick the victim into
making her edits on the Wiki under the attacker’s account. When the victim visits the attacker’s site,
the attack exploits the CSRF vulnerability to log the victim out of the Wiki site and log her back in
under the attacker’s account. The victim then interacts with the Wiki site, believing she is logged in as
herself, and edits various pages. A successful repair in this scenario would undo all of the victim’s
edits under the attacker’s account, and re-apply them under the victim’s own account.

In the clickjacking attack, the attacker’s site loads the Wiki site in an invisible frame and tricks
the victim into thinking she is interacting with the attacker’s site, while in fact she is unintentionally
interacting with the Wiki site, logged in as herself. Successful repair in this case would undo all
modifications unwittingly made by the user through the clickjacked frame.

We used retroactive patching to recover from all the above attacks, with patches implementing the
fixes shown in Table 2.

Finally, we considered a scenario where the administrator of the Wiki site mistakenly grants a
user access to Wiki pages she should not have been given access to. At a later point of time, the
administrator detects the misconfiguration, and initiates undo of his action using WARP. Meanwhile,
the user has used her elevated privileges to edit pages that she should not have been able to edit in the
first place. Successful recovery, in this case, would undo all the modifications by the unprivileged user.

For each of these scenarios we ran a workload with 100 users. For all scenarios except the ACL
error scenario, we have one attacker, three victims that were subject to attack, and 96 unaffected users.
For the ACL error scenario, we have one administrator, one unprivileged user that takes advantage of
the administrator’s mistake, and 98 other users. During the workloads, all users login, read, and edit
Wiki pages. In addition, in all scenarios except the ACL error, the victims visit the attacker’s web site,
which launches the attack from their browser.

Table 3 shows the results of repair for each of these scenarios. First, WARP can successfully repair
all of these attacks. Second, retroactive patching detects and repairs from intrusions due to all five
software vulnerabilities; the administrator does not need to detect or track down the initial attacks.
Finally, WARP has few user-visible conflicts. Conflicts arise either because a user was tricked by
the attacker into performing some browser action, or because the user should not have been able to
perform the action in the first place. The conflicts in the clickjacking scenario are of the first type;
we expect users would cancel their page visit on conflict, since they did not mean to interact with the
MediaWiki page on the attack site. The conflict in the ACL error scenario is of the second type, since
the user no longer has access to edit the page; in this case, the user’s edit has already been reverted,
and the user can resolve the conflict by, perhaps, editing a different page.

8.3 Browser re-execution effectiveness
We evaluated the effectiveness of browser re-execution in WARP by considering three types of attack
code, for an XSS attack. The first is a benign, read-only attack where the attacker’s JavaScript
code runs in the user’s browser but does not modify any Wiki pages. The second is an append-only
attack, where the malicious code appends text to the victim’s Wiki page. Finally, the overwrite attack
completely corrupts the victim’s Wiki page.

We ran these attacks under three configurations of the client browser: First, without WARP’s
browser extension; second, with WARP’s browser extension but without WARP’s text merging for user
input; and third, with WARP’s complete browser extension. Our experiment had one attacker and eight
victims. Each user logged in, visited the attack page to trigger one of the three above attacks, edited
Wiki pages, and logged out.

Table 4 shows the results when WARP is invoked to retroactively patch the XSS vulnerability.
Without WARP’s browser extension, WARP cannot verify whether the attacker’s JavaScript code was
benign or not, and raises a conflict for every victim of the XSS attack. With the browser extension but
without text-merging, WARP can verify that the read-only attack was benign, and raises no conflict, but
cannot re-execute the user’s page edits if the attacker did modify the page slightly, raising a conflict in
that scenario. Finally, WARP’s full browser extension is able to re-apply the user’s page edits despite
the attacker’s appended text, and raises no conflict in that situation. When the attacker completely

corrupts the page, applying user’s original changes in the absence of the attack is meaningless, and a
conflict is always raised.

8.4 Recovery comparison with prior work
Here we compare WARP with state-of-the-art work in data recovery for web applications by Akkuş and
Goel [1]. Their system uses taint tracking in web applications to recover from data corruption bugs.
In their system, the administrator identifies the request that triggered the bug, and their system uses
several dependency analysis policies to do offline taint analysis and compute dependencies between
the request and database elements. The administrator uses these dependencies to manually undo the
corruption. Each specific policy can output too many dependencies (false positives), leading to lost
data, or too few (false negatives), leading to incomplete recovery.

Akkuş and Goel used five corruption bugs from popular web applications to evaluate their system.
To compare WARP with their system, we evaluated WARP with four of these bugs—two each in Drupal
and Gallery2. The remaining bug is in Wordpress, which does not support our Postgres database.
Porting the buggy versions of Drupal and Gallery2 to use WARP did not require any changes to
source code. We replicated each of the four bugs under WARP. Once we verified that the bugs were
triggered, we retroactively patched the bug. Repair did not require any user input, and after repair, the
applications functioned correctly without any corrupted data.

Table 5 summarizes this evaluation. WARP has three key advantages over Akkuş and Goel’s
system. First, unlike their system, WARP never incurs false negatives and always leaves the application
in an uncorrupted state. Second, WARP only requires the administrator to provide the patch that fixes
the bug, whereas Akkuş and Goel require the administrator to manually guide the dependency analysis
by identifying requests causing corruption, and by whitelisting database tables. Third, unlike WARP,
their system cannot recover from attacks on web applications, and cannot recover from problems that
occur in the browser.

8.5 Performance evaluation
In this subsection, we evaluate WARP’s performance under different scenarios. In these experiments,
we ran the server on a 3.07 GHz Intel Core i7 950 machine with 12 GB of RAM. WARP’s repair
algorithm is currently sequential. Running it on a machine with multiple cores makes it difficult to
reason about the CPU usage of various components of WARP; so we ran the server with only one core
turned on and with hyperthreading turned off. However, during normal execution, WARP can take full
advantage of multiple processor cores when available.

Logging overhead. We first evaluate the overhead of using WARP by measuring the performance
of MediaWiki with and without WARP for two workloads: reading Wiki pages, and editing Wiki pages.
The clients were 8 Firefox browsers running on a machine different from the server, sending requests
as fast as possible; the server experienced 100% CPU load. The client and server machines were
connected with a 1 Gbps network.

Table 6 shows the throughput of MediaWiki with and without WARP, and the size of WARP’s
logs. For the reading and editing workloads, respectively, WARP incurs throughput overheads of 24%
and 27%, and storage costs of 3.71 KB and 7.34 KB per page visit (or 2 GB/day and 3.2 GB/day
under continuous 100% load). Many web applications already store similar log information; a 1 TB
drive could store about a year’s worth of logs at this rate, allowing repair from attacks within that time
period. We believe that this overhead would be acceptable to many applications, such as a company’s
Wiki or a conference reviewing web site.

To evaluate the overhead of WARP’s browser extension, we measured the load times of a Wiki
page in the browser with and without the WARP extension. This experiment was performed with an
unloaded MediaWiki server. The load times were 0.21 secs and 0.20 secs with and without the WARP
extension respectively, showing that the WARP browser extension imposes negligible overhead.

Finally, WARP indexes its logs to support incremental loading of its dependency graph during
repair. In our current prototype, for convenience, indexing is implemented as a separate step after
normal execution. This indexing step takes 24–28 ms per page visit for the workloads we tested. If
done during normal execution, this would add less than an additional 12% overhead.

Repair performance. We evaluate WARP’s repair performance by considering four scenarios.
First, we consider a scenario where a retroactive patch affects a small, isolated part of the action
history graph. This scenario evaluates WARP’s ability to efficiently load and redo only the affected
actions. To evaluate this scenario, we used the XSS, SQL injection, and ACL error workloads from
§8.2 with 100 users, and victim page visits at the end of the workload. The results are shown in the
first four rows of Table 7. The re-executed actions columns show that WARP re-executes only a small
fraction of the total number of actions in the workload, and a comparison of the original execution
time and total repair time columns shows that repair in these scenarios takes an order of magnitude
less time than the original execution time.

Second, we evaluate a scenario where the patch affects a small part of the action history graph
as before, but the affected actions in turn may affect several other actions. To test this scenario, we
used the reflected XSS workload with 100 users, but with victims at the beginning of the workload,
rather than at the end. Re-execution of the victims’ page visits in this case causes the database state to
change, which affects non-victims’ page visits. This scenario tests WARP’s ability to track database
dependencies and selectively re-execute database queries without having to re-execute non-victim
page visits. The results for this scenario are shown in the fifth row of Table 7.

A comparison of the results for both the reflected XSS attack scenarios shows that WARP re-
executes the same number of page visits in both cases, but the number of database queries is sig-
nificantly greater when victims are at the beginning. These extra database queries are queries from
non-victim page visits which depend on the database partitions that changed as a result of re-executing
victim pages. These queries are of two types: SELECT queries that need to be re-executed to check
whether their result has changed, and UPDATE queries that need to be re-executed to update the rolled-
back database rows belonging to the affected database partitions. From the repair time breakdown
columns, we see that the graph loading for these database query actions and their re-execution are the
main contributors to the longer repair time for this scenario, as compared to when victims were at the
end of the workload. Furthermore, we see that the total repair time is about one-third of the time for
original execution, and so WARP’s repair is significantly better than re-executing the entire workload.

Third, we consider a scenario where a patch requires all actions in the history to be re-executed.
We use the CSRF and clickjacking attacks as examples of this scenario. The results are shown in
the last two rows of Table 7. WARP takes an order of magnitude more time to re-execute all the
actions in the graph than the original execution time. Our unoptimized repair controller prototype
is currently implemented in Python, and the step-by-step re-execution of the repaired actions is a
significant contributor to this overhead. We believe implementing WARP in a more efficient language,
such as C++, would significantly reduce this overhead.

Finally, we evaluate how WARP scales to larger workloads. We measure WARP’s repair perfor-
mance for XSS, SQL injection, and ACL error workloads, as in the first scenario, but with 5,000 users
instead of 100. The results for this experiment are shown in Table 8. The number of actions affected by
the attack remain the same, and only those actions are re-executed as part of the repair. This indicates
WARP successfully avoids re-execution of requests that were not affected by the attack. Differences
in the number of re-executed actions (e.g., in the stored XSS attack) are due to non-determinism
introduced by MediaWiki object caching. We used a stock MediaWiki installation for our experiments,
in which MediaWiki caches results from past requests in an objectcache database table. During
repair, MediaWiki may invalidate some of the cache entries, resulting in more re-execution.

The repair time for the 5,000-user workload is only 3× the repair time for 100 users, for all
scenarios except SQL injection, despite the 50× increase in the overall workload. This suggests that
WARP’s repair time does not increase linearly with the size of the workload, and is mostly determined
by the number of actions that must be re-executed during repair. The SQL injection attack had a 10×
increase in repair time because the number of database rows affected by the attack increases linearly
with the number of users. The attack injects the SQL query UPDATE pagecontent SET old text
= old text || ‘attack’, which modifies every page. Recovering from this attack requires rolling
back all the users’ pages, and the time to do that increases linearly with the total number of users.

Concurrent repair overhead. When repair is ongoing, WARP allows the web application to
continue normal operation using repair generations. To evaluate repair generations, we measured the

performance of MediaWiki for the read and edit workloads from §8.5 while repair is underway for the
CSRF attack.

The results are shown in the “During repair” column of Table 6. They demonstrate that WARP
allows MediaWiki to be online and functioning normally while repair is ongoing, albeit at a lower
performance—with 24% to 30% lower number of page visits per second than if there were no repair
in progress. The drop in performance is due to both repair and normal execution sharing the same
machine resources. This can be alleviated if dedicated resources (e.g., a dedicated processor core)
were available for repair.

9 RELATED WORK
The two closest pieces of work related to WARP are the Retro intrusion recovery system [14] and the
web application data recovery system by Akkuş and Goel [1].

While WARP builds on ideas from Retro, Retro focuses on shell-oriented Unix applications on a
single machine. WARP extends Retro with three key ideas to handle web applications. First, Retro
requires an intrusion detection system to detect attacks, and an expert administrator to track down
the root cause of every intrusion; WARP’s retroactive patching allows an administrator to simply
supply a security patch for the application’s code. Second, Retro’s file- and process-level rollback and
dependency tracking cannot perform fine-grained rollback and dependency analysis for individual
SQL queries that operate on the same table, and cannot perform online repair, and WARP’s time-travel
database can.3 Third, repairing any network I/O in Retro requires user input; in a web application, this
would require every user to resolve conflicts at the TCP level. WARP’s browser re-execution eliminates
the need to resolve most conflicts, and presents a meaningful UI for true conflicts that require user
input.

Akkuş and Goel’s data recovery system uses taint tracking to analyze dependencies between HTTP
requests and database elements, and thereby recover from data corruption errors in web applications.
However, it can only recover from accidental mistakes, as opposed to malicious attacks (in part due to
relying on white-listing to reduce false positives), and requires administrator guidance to reduce false
positives and false negatives. WARP can fully recover from data corruptions due to bugs as well as
attacks, with no manual intervention (except when there are conflicts during repair). §8.4 compared
WARP to Akkuş and Goel’s system in more detail.

Provenance-aware storage systems [24, 26] record dependency information similar to WARP, and
can be used by an administrator to track down the effects of an intrusion or misconfiguration. Margo
and Seltzer’s browser provenance system [20] shows how provenance information can be extended to
web browsers. WARP similarly tracks provenance information across web servers and browsers, and
aggregates this information at the server, but WARP also records sufficient information to re-execute
browser events and user input in a new context during repair. However, our WARP prototype does not
help users understand the provenance of their own data.

Ibis [28] and PASSv2 [25] show how to incorporate provenance information across multiple layers
in a system. While WARP only tracks dependencies at a fixed level (SQL queries, HTTP requests,
and browser DOM events), we hope to adopt ideas from these systems in the future, to recover from
intrusions that span many layers (e.g., the database server or the language runtime).

WARP’s idea of retroactive patching provides a novel approach to intrusion detection, which can be
used on its own to detect whether recently patched vulnerabilities have been exploited before the patch
was applied. Work on vulnerability-specific predicates [13] is similar in its use of re-execution (at
the virtual machine level), but requires writing specialized predicates for each vulnerability, whereas
WARP only requires the patch itself.

Much of the work on intrusion detection and analysis [5, 11, 15, 16, 18, 32] is complementary
to WARP, and can be applied in parallel. When an intrusion is detected and found using an existing
intrusion detection tool, the administrator can use WARP to recover from the effects of that intrusion
in a web application.

Polygraph [19] recovers from compromises in a weakly consistent replication system. Unlike
WARP, Polygraph does not attempt to preserve legitimate changes to affected files, and does not

3One of Retro’s scenarios involved database repair, but it worked by rolling back the entire database file,
and re-executing every SQL query.

attempt to automate detection of compromises. Polygraph works well for applications that do not
operate on multiple files at once. In contrast, WARP deals with web applications, which frequently
access shared data in a single SQL database.

Tracking down and reverting malicious actions has been explored in the context of databases [2, 17].
WARP cannot rely purely on database transaction dependencies, because web applications tend to
perform significant amounts of data processing in the application code and in web browsers, and
WARP tracks dependencies across all those components. WARP’s time-travel database is in some ways
reminiscent of a temporal database [29, 30]. However, unlike a temporal database, WARP has no need
for more complex temporal queries; supports two time-like dimensions (wall-clock time and repair
generations); and allows partitioning rows for dependency analysis.

Many database systems exploit partitioning for performance; WARP uses partitioning for depen-
dency analysis. The problem of choosing a suitable partitioning has been addressed in the context
of minimizing distributed transactions on multiple machines [3], and in the context of index selec-
tion [6, 12]. These techniques might be helpful in choosing a partitioning for tables in WARP.

Mugshot [22] performs deterministic recording and replay of JavaScript events, but cannot replay
events on a changed web page. WARP must replay user input on a changed page in order to re-apply
legitimate user changes after effects of the attack have been removed from a page. WARP’s DOM-level
replay matches event targets between record and replay even if other parts of the page differ.

10 DISCUSSION AND LIMITATIONS
While our prototype depends on a browser extension to record client-side events and user input, we
believe it would be possible to do so in pure JavaScript as well. In future work, we plan to explore
this possibility, perhaps leveraging Caja [23] to wrap existing JavaScript code and record all browser
events and user input; the browser’s same-origin policy already allows JavaScript code to perform all
of the necessary logging. We also plan to verify that DOM-level events recorded in one browser can
be re-executed in a different standards-compliant browser. In the meantime, we note that operators of
complex web applications often already have an infrastructure of virtual machines and mobile phone
emulators for testing across browser platforms, and a similar infrastructure could be used for WARP’s
repair.

The client-side logs, uploaded by WARP’s extension to the server, can contain sensitive information.
For example, if a user enters a password on one of the pages of a web application, the user’s key
strokes will be recorded in this log, in case that page visit needs to be re-executed at a later time.
Although this information is accessible to web applications even without WARP, applications might
not record or store this information on their own, and WARP must safeguard this additional stored
information from unintended disclosure.

In future work, we plan to explore ways in which WARP-aware applications can avoid logging
known-sensitive data, such as passwords, by modifying replay to assume that a valid (or invalid)
password was supplied, without having to re-enter the actual password. The logs can also be encrypted
so that the administrator must provide the corresponding decryption key to initiate repair. An alternative
design—storing the logs locally on each client machine and relying on client machines to participate in
the repair process—would prevent a single point of compromise for all logs, but would make complete
repair a lengthy process, since each client machine will have to come online to replay its log.

WARP’s current design cannot re-execute mashup web applications (i.e., those involving multiple
web servers), since the event logs for each web application’s frame would be uploaded to a different
web server. We plan to explore re-execution of such multi-origin web applications, as long as all of
the web servers involved in the mashup support WARP. The approach we imagine taking is to have the
client sign each event that spans multiple origins (such as a postMessage between frames) with a
private key corresponding to the source origin. This would allow WARP re-executing at the source
origin’s server to convince WARP on the other frame’s origin server that it should be allowed to initiate
re-execution for that user.

Retroactive patching by itself cannot be used to recover from attacks that resulted from leaked
credentials. For example, an attacker can use an existing XSS vulnerability in an application to
steal a user’s credentials and use them to impersonate the user and perform unauthorized actions.
Retroactive patching of the XSS vulnerability cannot distinguish the actions of the attacker’s browser

from legitimate actions of the user’s browser, as both used the same credentials. However, if the user
is willing to identify the legitimate browsers, WARP can undo the actions performed by the attacker’s
browser.

We plan to explore tracking dependencies at multiple levels of abstraction, borrowing ideas from
prior work [14, 25, 28]. This may allow WARP to recover from compromises in lower layers of
abstraction, such as a database server or the application’s language runtime. We also hope to extend
WARP’s undo mechanism higher into the application, to integrate with application-level undo features,
such as MediaWiki’s revert mechanism.

In our current prototype, we instrument the web application server to log HTTP requests and
database queries. This requires that the application server be fully trusted to not tamper with WARP
logging, and requires modification of the application server software, which may not always be
possible. It also does not support replicated web application servers, as the logs for a replica contain
the local times at that replica, which are not directly comparable to local times at other replicas. In
future work, we plan to explore an alternative design with WARP proxies in front of the application’s
HTTP load balancer and the database, and perform logging in those proxies. This design addresses
the above limitations, but can lead to more re-execution during repair, as it does not capture the exact
database queries made for each HTTP request.

We also plan to explore techniques to further reduce the number of application runs re-executed
due to retroactive patching, by determining which runs actually invoked the patched function, instead
of the runs that just loaded the patched file.

Our current prototype assumes that the application code does not change, other than through
retroactive patching. While this assumption is unrealistic, fixing it is straightforward. WARP’s
application repair manager would need to record each time the application’s source code changed.
Then, during repair, the application manager would roll back these source code changes (when rolling
back to a time before these changes were applied), and would re-apply these patches as the repaired
timeline progressed (in the process merging these original changes with any newly supplied retroactive
patches).

11 SUMMARY
This paper presented WARP, an intrusion recovery system for web applications. WARP introduced
three key ideas to make intrusion recovery practical. Retroactive patching allows administrators
to recover from past intrusions by simply supplying a new security patch, without having to even
know if an attack occurred. The time-travel database allows WARP to perform precise repair of just
the affected parts of the system. Finally, DOM-level replay of user input allows WARP to preserve
legitimate changes with no user input in many cases. A prototype of WARP can recover from attacks,
misconfigurations, and data loss bugs in three applications, without requiring any code changes, and
with modest runtime overhead.

ACKNOWLEDGMENTS
We thank Victor Costan, Frans Kaashoek, Robert Morris, Jad Naous, Hubert Pham, Eugene Wu,
the anonymous reviewers, and our shepherd, Yuanyuan Zhou, for their feedback. This research was
partially supported by the DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH)
program under contract #N66001-10-2-4089, by NSF award CNS-1053143, by Quanta, and by Google.
Taesoo Kim is partially supported by the Samsung Scholarship Foundation. The opinions in this paper
do not necessarily represent DARPA or official US policy.

REFERENCES
[1] İ. E. Akkuş and A. Goel. Data recovery for web applications. In Proceedings of the 40th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, Chicago, IL, Jun–Jul
2010.

[2] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious transactions. Transactions on
Knowledge and Data Engineering, 14:1167–1185, 2002.

[3] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach to database
replication and partitioning. Proceedings of the VLDB Endowment, 3(1), 2010.

[4] Damon Cortesi. Twitter StalkDaily worm postmortem. http://dcortesi.com/2009/04/11/
twitter-stalkdaily-worm-postmortem/.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. ReVirt: Enabling intrusion
analysis through virtual-machine logging and replay. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, pages 211–224, Boston, MA, Dec 2002.

[6] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for relational databases.
ACM Transactions on Database Systems, 13(1):91–128, 1988.

[7] C. Goldfeder. Gmail snooze with apps script. http://googleappsdeveloper.blogspot.
com/2011/07/gmail-snooze-with-apps-script.html.

[8] D. Goodin. Surfing Google may be harmful to your security. The Register, Aug 2008. http:
//www.theregister.co.uk/2008/08/09/google_gadget_threats/.

[9] Google, Inc. Google apps script. http://code.google.com/googleapps/appsscript/.
[10] S. Gordeychik. Web application security statistics. http://www.webappsec.org/projects/

statistics/.
[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system calls.

Journal of Computer Security, 6:151–180, 1998.
[12] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the selection of an optimal set of indexes.

IEEE Trans. Softw. Eng., 9(2):135–143, 1983.
[13] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting past and present intrusions through

vulnerability-specific predicates. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles, pages 91–104, Brighton, UK, Oct 2005.

[14] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion recovery using selective
re-execution. In Proceedings of the 9th Symposium on Operating Systems Design and Implemen-
tation, pages 89–104, Vancouver, Canada, Oct 2010.

[15] S. T. King and P. M. Chen. Backtracking intrusions. ACM Transactions on Computer Systems,
23(1):51–76, Feb 2005.

[16] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from Unix process execution traces for
intrusion detection. In Proceedings of the AAAI Workshop on AI Approaches in Fraud Detection
and Risk Management, pages 50–56, Jul 1997.

[17] P. Liu, P. Ammann, and S. Jajodia. Rewriting histories: Recovering from malicious transactions.
Journal of Distributed and Parallel Databases, 8:7–40, 2000.

[18] B. Livshits and W. Cui. Spectator: Detection and containment of JavaScript worms. In
Proceedings of the 2008 USENIX Annual Technical Conference, Boston, MA, Jun 2008.

[19] P. Mahajan, R. Kotla, C. C. Marshall, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, and
T. Wobber. Effective and efficient compromise recovery for weakly consistent replication. In
Proceedings of the ACM EuroSys Conference, Nuremberg, Germany, Mar 2009.

[20] D. W. Margo and M. Seltzer. The case for browser provenance. In Proceedings of the 1st
Workshop on the Theory and Practice of Provenance, San Francisco, CA, Feb 2009.

[21] MediaWiki. MediaWiki. http://www.mediawiki.org.
[22] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture and replay for JavaScript

applications. In Proceedings of the 7th Symposium on Networked Systems Design and Implemen-
tation, San Jose, CA, Apr 2010.

[23] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in sanitized
JavaScript, 2008. http://code.google.com/p/google-caja/downloads/list.

[24] K.-K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer. Provenance-aware storage
systems. In Proceedings of the 2006 USENIX Annual Technical Conference, Boston, MA,
May–Jun 2006.

http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem/
http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem/
http://googleappsdeveloper.blogspot.com/2011/07/gmail-snooze-with-apps-script.html
http://googleappsdeveloper.blogspot.com/2011/07/gmail-snooze-with-apps-script.html
http://www.theregister.co.uk/2008/08/09/google_gadget_threats/
http://www.theregister.co.uk/2008/08/09/google_gadget_threats/
http://code.google.com/googleapps/appsscript/
http://www.webappsec.org/projects/statistics/
http://www.webappsec.org/projects/statistics/
http://www.mediawiki.org
http://code.google.com/p/google-caja/downloads/list

[25] K.-K. Muniswamy-Reddy, U. Braun, D. Holland, P. Macko, D. Maclean, D. W. Margo, M. Seltzer,
and R. Smogor. Layering in provenance systems. In Proceedings of the 2009 USENIX Annual
Technical Conference, San Diego, CA, Jun 2009.

[26] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer. Provenance for the cloud. In Proceedings
of the 8th Conference on File and Storage Technologies, San Jose, CA, Feb 2010.

[27] National Vulnerability Database. CVE statistics. http://web.nvd.nist.gov/view/vuln/
statistics, Feb 2011.

[28] C. Olston and A. D. Sarma. Ibis: A provenance manager for multi-layer systems. In Proceedings
of the 5th Biennial Conference on Innovative Data Systems Research, Pacific Grove, CA, Jan
2011.

[29] Oracle Corporation. Oracle flashback technology. http://www.oracle.com/technetwork/
database/features/availability/flashback-overview-082751.html.

[30] R. T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35–42, Sep 1986.
[31] J. Tyson. Recent Facebook XSS attacks show increasing sophistication. http://

theharmonyguy.com/2011/04/21/recent-facebook-xss-attacks/, Apr 2011.
[32] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: Alternative

data models. In Proceedings of the 20th IEEE Symposium on Security and Privacy, Oakland,
CA, May 1999.

[33] K. Wickre. About that fake post. http://googleblog.blogspot.com/2006/10/

about-that-fake-post.html.

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://www.oracle.com/technetwork/database/features/availability/flashback-overview-082751.html
http://www.oracle.com/technetwork/database/features/availability/flashback-overview-082751.html
http://theharmonyguy.com/2011/04/21/recent-facebook-xss-attacks/
http://theharmonyguy.com/2011/04/21/recent-facebook-xss-attacks/
http://googleblog.blogspot.com/2006/10/about-that-fake-post.html
http://googleblog.blogspot.com/2006/10/about-that-fake-post.html

A
tt

ac
k

ty
pe

C
V

E
D

es
cr

ip
tio

n
Fi

x

R
efl

ec
te

d
X

SS
20

09
-0

73
7

T
he

us
er

op
tio

ns
(w
g
D
B
*

)
in

th
e

liv
e

w
eb

-b
as

ed
in

st
al

le
r

(c
o
n
f
i
g
/
i
n
d
e
x
.
p
h
p

)a
re

no
tH

T
M

L
-e

sc
ap

ed
.

Sa
ni

tiz
e

al
lu

se
ro

pt
io

ns
w

ith
h
t
m
l
s
p
e
c
i
a
l
c
h
a
r
s
(
)

(r
46

88
9)

.

St
or

ed
X

SS
20

09
-4

58
9

T
he

na
m

e
of

co
nt

ri
bu

tio
n

lin
k

(S
p
e
c
i
a
l
:
B
l
o
c
k
?
i
p

)
is

no
t

H
T

M
L

-e
sc

ap
ed

.
Sa

ni
tiz

e
th

e
i
p

pa
ra

m
et

er
w

ith
h
t
m
l
s
p
e
c
i
a
l
c
h
a
r
s
(
)

(r
52

52
1)

.

C
SR

F
20

10
-1

15
0

H
T

M
L

/A
PI

lo
gi

n
in

te
rf

ac
es

do
no

tp
ro

pe
rl

y
ha

nd
le

an
un

in
-

te
nd

ed
lo

gi
n

at
te

m
pt

(l
og

in
C

SR
F)

.
In

cl
ud

e
a

ra
nd

om
ch

al
le

ng
e

to
ke

n
in

a
hi

dd
en

fo
rm

fie
ld

fo
re

ve
ry

lo
gi

n
at

te
m

pt
(r

64
67

7)
.

C
lic

kj
ac

ki
ng

20
11

-0
00

3
A

m
al

ic
io

us
w

eb
si

te
ca

n
em

be
d

M
ed

ia
W

ik
i

w
ith

in
an

i
f
r
a
m
e

.
A

dd
X
-
F
r
a
m
e
-
O
p
t
i
o
n
s
:
D
E
N
Y

to
H

T
T

P
he

ad
er

s
(r

79
56

6)
.

SQ
L

in
je

ct
io

n
20

04
-2

18
6

T
he

la
ng

ua
ge

id
en

tifi
er

,t
h
e
l
a
n
g

,i
s

no
tp

ro
pe

rl
y

sa
ni

tiz
ed

in
S
p
e
c
i
a
l
M
a
i
n
t
e
n
a
n
c
e
.
p
h
p

.
Sa

ni
tiz

e
th

e
t
h
e
l
a
n
g

pa
ra

m
et

er
w

ith
w
f
S
t
r
e
n
c
o
d
e
(
)

.

A
C

L
er

ro
r

—
A

dm
in

is
tr

at
or

ac
ci

de
nt

al
ly

gr
an

ts
ad

m
in

pr
iv

ile
ge

s
to

a
us

er
.

R
ev

ok
e

th
e

us
er

’s
ad

m
in

pr
iv

ile
ge

s.

Ta
bl

e
2:

Se
cu

rit
y

vu
ln

er
ab

ili
tie

s
an

d
co

rr
es

po
nd

in
g

fix
es

fo
rM

ed
ia

W
ik

i.
W

he
re

av
ai

la
bl

e,
w

e
in

di
ca

te
th

e
re

vi
si

on
nu

m
be

ro
fe

ac
h

fix
in

M
ed

ia
W

ik
i’s

su
bv

er
si

on
re

po
si

to
ry

,
in

pa
re

nt
he

se
s.

Attack scenario Initial repair Repaired? # users with conflicts
Reflected XSS Retroactive patching � 0
Stored XSS Retroactive patching � 0
CSRF Retroactive patching � 0
Clickjacking Retroactive patching � 3
SQL injection Retroactive patching � 0
ACL error Admin-initiated � 1

Table 3: WARP repairs the attack scenarios listed in Table 2. The initial repair column indicates the method
used to initiate repair.

Attack action Number of users with conflict
No extension No text merge WARP

read-only 8 0 0
append-only 8 8 0
overwrite 8 8 8

Table 4: Effectiveness of WARP UI repair. Each entry indicates whether a user-visible conflict was observed
during repair. This experiment involved eight victim users and one attacker.

Bug causing corruption Akkuş and Goel [1] WARP
FP User input FP User input

Drupal – lost voting info 89 / 0 Yes 0 No
Drupal – lost comments 95 / 0 Yes 0 No
Gallery2 – removing perms 82 / 10 Yes 0 No
Gallery2 – resizing images 119 / 0 Yes 0 No

Table 5: Comparison of WARP with Akkuş and Goel’s system [1]. FP reports false positives. Akkuş and
Goel can also incur false negatives, unlike WARP. False positives are reported for the best dependency policy
in [1] that has no false negatives for these bugs, although there is no single best policy for that system. The
numbers shown before and after the slash are without and with table-level white-listing, respectively.

Workload
Page visits / second Data stored per page visit

No WARP
During Browser App. DBWARP repair

Reading 8.46 6.43 4.50 0.22 KB 1.49 KB 2.00 KB
Editing 7.19 5.26 4.00 0.21 KB 1.67 KB 5.46 KB

Table 6: Overheads for users browsing and editing Wiki pages in MediaWiki. The first numbers are page
visits per second without WARP, with WARP installed, and with WARP while repair is concurrently underway.
A single page visit in MediaWiki can involve multiple HTTP and SQL queries. Data stored per page visit
includes all dependency information (compressed) and database checkpoints.

A
tt

ac
k

sc
en

ar
io

N
um

be
r

of
re

-e
xe

cu
te

d
ac

tio
ns

O
ri

gi
na

l
R

ep
ai

r
tim

e
br

ea
kd

ow
n

Pa
ge

vi
si

ts
A

pp
.r

un
s

SQ
L

qu
er

ie
s

ex
ec

.t
im

e
To

ta
l

In
it

G
ra

ph
Fi

re
fo

x
D

B
A

pp
.

C
tr

l
Id

le
R

efl
ec

te
d

X
SS

14
/1

,0
11

13
/1

,2
23

25
8

/2
4,

74
6

18
0.

04
17

.8
7

2.
44

0.
13

1.
21

1.
24

2.
45

8.
99

1.
41

St
or

ed
X

SS
14

/1
,0

07
15

/1
,2

19
29

3
/2

4,
74

0
17

9.
22

16
.7

4
2.

64
0.

12
1.

12
0.

98
2.

45
8.

23
1.

20
SQ

L
in

je
ct

io
n

22
/1

,0
05

23
/1

,2
14

52
4

/2
4,

54
1

17
7.

82
29

.7
0

2.
41

0.
16

1.
65

0.
05

4.
16

17
.2

5
4.

01
A

C
L

er
ro

r
13

/1
,0

00
13

/1
,2

16
18

5
/2

4,
32

6
17

6.
52

10
.7

5
0.

54
0.

49
1.

04
0.

03
2.

25
6.

04
0.

35
R

efl
ec

te
d

X
SS

14
/1

,0
11

14
/1

,2
23

1,
80

0
/2

4,
74

1
17

8.
21

66
.6

7
2.

50
14

.4
6

1.
27

26
.1

3
2.

23
14

.1
2

5.
97

(v
ic

tim
s

at
st

ar
t)

C
SR

F
1,

00
5

/1
,0

05
1,

00
7

/1
,2

17
19

,7
99

/2
4,

57
8

17
4.

97
1,

64
4.

53
15

9.
99

0.
46

52
.0

1
0.

70
17

4.
04

1,
22

2.
05

35
.2

7
C

lic
kj

ac
ki

ng
1,

01
1

/1
,0

11
99

5
/1

,2
16

23
,2

27
/2

4,
64

1
17

4.
31

1,
75

1.
74

16
2.

49
0.

45
52

.1
9

0.
75

17
1.

18
1,

32
0.

89
43

.7
8

Ta
bl

e
7:

Pe
rf

or
m

an
ce

of
W

A
R

P
in

re
pa

ir
in

g
at

ta
ck

sc
en

ar
io

s
de

sc
ri

be
d

in
Ta

bl
e

2
fo

ra
w

or
kl

oa
d

w
ith

10
0

us
er

s.
T

he
“r

e-
ex

ec
ut

ed
ac

tio
ns

”
co

lu
m

ns
sh

ow
th

e
nu

m
be

ro
f

re
-e

xe
cu

te
d

ac
tio

ns
ou

to
ft

he
to

ta
ln

um
be

ro
fa

ct
io

ns
in

th
e

w
or

kl
oa

d.
Th

e
ex

ec
ut

io
n

tim
es

ar
e

in
se

co
nd

s.
Th

e
“o

rig
in

al
ex

ec
ut

io
n

tim
e”

co
lu

m
n

sh
ow

s
th

e
C

PU
tim

e
ta

ke
n

by
th

e
w

eb
ap

pl
ic

at
io

n
se

rv
er

,i
nc

lu
di

ng
tim

e
ta

ke
n

by
da

ta
ba

se
qu

er
ie

s.
Th

e
“r

ep
ai

rt
im

e
br

ea
kd

ow
n”

co
lu

m
ns

sh
ow

,r
es

pe
ct

iv
el

y,
th

e
to

ta
lw

al
lc

lo
ck

re
pa

ir
tim

e,
th

e
tim

e
to

in
iti

al
iz

e
re

pa
ir

(i
nc

lu
di

ng
tim

e
to

se
ar

ch
fo

ra
tta

ck
ac

tio
ns

),
th

e
tim

e
sp

en
tl

oa
di

ng
no

de
s

in
to

th
e

ac
tio

n
hi

st
or

y
gr

ap
h,

th
e

C
PU

tim
e

ta
ke

n
by

th
e

re
-e

xe
cu

tio
n

Fi
re

fo
x

br
ow

se
r,

th
e

tim
e

ta
ke

n
by

re
-e

xe
cu

te
d

da
ta

ba
se

qu
er

ie
s

th
at

ar
e

no
tp

ar
to

fa
pa

ge
re

-e
xe

cu
tio

n,
tim

e
ta

ke
n

to
re

-e
xe

cu
te

pa
ge

vi
si

ts
in

cl
ud

in
g

tim
e

to
ex

ec
ut

e
da

ta
ba

se
qu

er
ie

s
is

su
ed

du
ri

ng
pa

ge
re

-e
xe

cu
tio

n,
tim

e
ta

ke
n

by
W

A
R

P’
s

re
pa

ir
co

nt
ro

lle
r,

an
d

tim
e

fo
rw

hi
ch

th
e

C
PU

is
id

le
du

ri
ng

re
pa

ir.

A
tt

ac
k

sc
en

ar
io

N
um

be
r

of
re

-e
xe

cu
te

d
ac

tio
ns

O
ri

gi
na

l
R

ep
ai

r
tim

e
br

ea
kd

ow
n

Pa
ge

vi
si

ts
A

pp
.r

un
s

SQ
L

qu
er

ie
s

ex
ec

.t
im

e
To

ta
l

In
it

G
ra

ph
Fi

re
fo

x
D

B
A

pp
.

C
tr

l
Id

le
R

efl
ec

te
d

X
SS

14
/5

0,
01

1
14

/6
0,

02
3

28
1

/1
,2

22
,6

56
8,

86
1.

55
48

.2
8

11
.3

4
10

.8
9

1.
33

0.
52

2.
23

21
.3

0
0.

67
St

or
ed

X
SS

32
/5

0,
00

7
33

/6
0,

01
9

73
3

/1
,2

22
,6

52
8,

84
1.

67
56

.5
0

11
.4

9
11

.1
0

2.
10

0.
04

5.
58

23
.9

8
2.

22
SQ

L
in

je
ct

io
n

26
/5

0,
00

5
27

/6
0,

01
4

57
8

/1
,2

22
,4

95
8,

87
5.

06
27

3.
40

14
.5

7
15

.9
8

7.
37

0.
09

4.
85

11
8.

18
11

2.
36

A
C

L
er

ro
r

11
/5

0,
00

0
11

/6
0,

01
6

13
3

/1
,2

22
,3

08
8,

87
9.

55
41

.8
1

9.
20

10
.2

5
1.

07
0.

08
1.

74
19

.1
0

0.
37

Ta
bl

e
8:

Pe
rf

or
m

an
ce

of
W

A
R

P
in

at
ta

ck
sc

en
ar

io
s

fo
rw

or
kl

oa
ds

of
5,

00
0

us
er

s.
Se

e
Ta

bl
e

7
fo

ra
de

sc
ri

pt
io

n
of

th
e

co
lu

m
ns

.

	Introduction
	Overview
	Review of Retro
	Repairing web applications
	Assumptions

	Retroactive patching
	Normal execution
	Initiating repair
	Re-execution

	Time-travel database
	Reducing re-execution
	Re-executing multi-row queries
	Concurrent repair and normal operation
	Rewriting SQL queries

	Browser re-execution
	Tracking page dependencies
	Recording events
	Server-side re-execution
	Conflicts
	User-initiated repair

	Implementation
	Putting it all together
	Evaluation
	Application changes
	Recovery from attacks
	Browser re-execution effectiveness
	Recovery comparison with prior work
	Performance evaluation

	Related work
	Discussion and limitations
	Summary

