
Scalable Consistency in Scatter

Lisa Glendenning Ivan Beschastnikh

Arvind Krishnamurthy Thomas Anderson

Department of Computer Science & Engineering
University of Washington

ABSTRACT
Distributed storage systems often trade off strong semantics for improved scalability. This
paper describes the design, implementation, and evaluation of Scatter, a scalable and con-
sistent distributed key-value storage system. Scatter adopts the highly decentralized and
self-organizing structure of scalable peer-to-peer systems, while preserving linearizable con-
sistency even under adverse circumstances. Our prototype implementation demonstrates
that even with very short node lifetimes, it is possible to build a scalable and consistent
system with practical performance.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Software—Distributed sys-
tems

General Terms
Design, Reliability

Keywords
Distributed systems, consistency, scalability, fault tolerance, storage, distributed transac-
tions, Paxos

1. INTRODUCTION
A long-standing and recurrent theme in distributed systems research is the design and
implementation of efficient and fault tolerant storage systems with predictable and well-
understood consistency properties. Recent efforts in peer-to-peer (P2P) storage services
include Chord [36], CAN [26], Pastry [30], OpenDHT [29], OceanStore [16], and Kadem-
lia [22]. Recent industrial efforts to provide a distributed storage abstraction across data
centers include Amazon’s Dynamo [10], Yahoo!’s PNUTS [8], and Google’s Megastore [1]

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

and Spanner [9] projects. Particularly with geographic distribution, whether due to using
multiple data centers or a P2P resource model, the tradeoffs between efficiency and consis-
tency are non-trivial, leading to systems that are complex to implement, complex to use,
and sometimes both.

Our interest is in building a storage layer for a very large scale P2P system we are designing
for hosting planetary scale social networking applications. Purchasing, installing, powering
up, and maintaining a very large scale set of nodes across many geographically distributed
data centers is an expensive proposition; it is only feasible on an ongoing basis for those
applications that can generate revenue. In much the same way that Linux offers a free
alternative to commercial operating systems for researchers and developers interested in
tinkering, we ask: what is the Linux analogue with respect to cloud computing?

P2P systems provide an attractive alternative, but first generation storage layers were
based on unrealistic assumptions about P2P client behavior in the wild. In practice,
participating nodes have widely varying capacity and network bandwidth, connections are
flaky and asymmetric rather than well-provisioned, workload hotspots are common, and
churn rates are very high [27, 12]. This led to a choice for application developers: weakly
consistent but scalable P2P systems like Kademlia and OpenDHT, or strongly consistent
data center storage.

Our P2P storage layer, called Scatter, attempts to bridge this gap – to provide an open-
source, free, yet robust alternative to data center computing, using only P2P resources.
Scatter provides scalable and consistent distributed hash table key-value storage. Scatter
is robust to P2P churn, heterogeneous node capacities, and flaky and irregular network
behavior. (We have left robustness to malicious behavior, such as against DDoS attacks
and Byzantine faults, to future work.) In keeping with our goal of building an open
system, an essential requirement for Scatter is that there be no central point of control for
commercial interests to exploit.

The base component of Scatter is a small, self-organizing group of nodes, each managing
a range of keys, akin to a BigTable [6] tablet. A set of groups together partition the table
space to provide the distributed hash table abstraction. Each group is responsible for
providing consistent read/write access to its key range, and for reconfiguring as necessary
to meet performance and availability goals. As nodes are added, as nodes fail, or as the
workload changes for a region of keys, individual groups must merge with neighboring
groups, split into multiple groups, or shift responsibility over parts of the key space to
neighboring groups, all while maintaining consistency. A lookup overlay topology connects
the Scatter groups in a ring, and groups execute distributed transactions in a decentralized
fashion to modify the topology consistently and atomically.

A key insight in the design of Scatter is that the consistent group abstraction provides
a stable base on which to layer the optimizations needed to maintain overall system per-
formance and availability goals. While existing popular DHTs have difficulty maintaining
consistent routing state and consistent name space partitioning in the presence of high
churn, these properties are a direct consequence of Scatter’s design. Further, Scatter can
locally adjust the amount of replication, or mask a low capacity node, or merge/split
groups if a particular Scatter group has an unusual number of weak/strong nodes, all
without compromising the structural integrity of the distributed table.

Of course, some applications may tolerate weaker consistency models for application data
storage [10], while other applications have stronger consistency requirements [1]. Scatter
is designed to support a variety of consistency models for application key storage. Our
current implementation provides linearizable storage within a given key; we support cross-
group transactions for consistent updates to meta-data during group reconfiguration, but

A

D
join leave

a1.

a2.

CDA

B C A B C

D
joinleave

A CD

b1.

b2.

(a) Key Assignment Violation (b) Routing Violation

Figure 1: Two examples demonstrating how (a) key assignment consistency
and (b) routing integrity may be violated in a traditional DHT. Bold lines
indicate key assignment and are associated with nodes. Dotted lines indicate
successor pointers. Both scenarios arise when nodes join and leave concur-
rently, as pictured in (a1) and (b1). The violation in (a2) may result in clients
observing inconsistent key values, while (b2) jeopardizes overlay connectivity.

we do not attempt to linearize multi-key application transactions. These steps are left
for future work; however, we believe that the Scatter group abstraction will make them
straightforward to implement.

We evaluate our system in a variety of configurations, for both micro-benchmarks and for
a Twitter-style application. Compared to OpenDHT, a publicly accessible open-source
DHT providing distributed storage, Scatter provides equivalent performance with much
better availability, consistency, and adaptability. We show that we can provide practical
distributed storage even in very challenging environments. For example, if average node
lifetimes are as short as three minutes, therefore triggering very frequent reconfigurations
to maintain data durability, Scatter is able to maintain overall consistency and data avail-
ability, serving its reads in an average of 1.3 seconds in a typical wide area setting.

2. BACKGROUND
Scatter’s design synthesizes techniques from both highly scalable systems with weak guar-
antees and strictly consistent systems with limited scalability, to provide the best of both
worlds. This section overviews the two families of distributed systems whose techniques
we leverage in building Scatter.

Distributed Hash Tables (DHTs): DHTs are a class of highly distributed storage
systems providing scalable, key based lookup of objects in dynamic network environments.
As a distributed systems building primitive, DHTs have proven remarkably versatile, with
application developers having leveraged scalable lookup to support a variety of distributed
applications. They are actively used in the wild as the infrastructure for peer-to-peer
systems on the order of millions of users.

In a traditional DHT, both application data and node IDs are hashed to a key, and data
is stored at the node whose hash value immediately precedes (or follows) the key. In many
DHTs, the node storing the key’s value replicates the data to its neighbors for better
reliability and availability [30]. Even so, many DHTs suffer inconsistencies in certain
failure cases, both in how keys are assigned to nodes, and in how requests are routed to
keys, yielding inconsistent results or reduced levels of availability. These issues are not
new [12, 4]; we recite them to provide context for our work.

Assignment Violation: A fundamental DHT correctness property is for each key to be
managed by at most one node. We refer to this property as assignment consistency. This
property is violated when multiple nodes claim ownership over the same key. In the figure,
a section of a DHT ring is managed by three nodes, identified by their key values A, B,
and C. A new node D joins at a key between A and B and takes over the key-range (A,D].
However, before B can let C know of this change in the key-range assignment, B fails.
Node C detects the failure and takes over the key-range (A,B] maintained by B. This
key-range, however, includes keys maintained by D. As a result, clients accessing keys in
(A,D] may observe inconsistent key values depending on whether they are routed to node
C or D.

Routing Violation: Another basic correctness property stipulates that the system maintains
consistent routing entries at nodes so that the system can route lookup requests to the
appropriate node. In fact, the correctness of certain links is essential for the overlay
to remain connected. For example, the Chord DHT relies on the consistency of node
successor pointers (routing table entries that reference the next node in the key-space) to
maintain DHT connectivity [35]. Figure 1b illustrates how a routing violation may occur
when node joins and leaves are not handled atomically. In the figure, node D joins at a
key between B and C, and B fails immediately after. Node D has a successor pointer
correctly set to C, however, A is not aware of D and incorrectly believes that C is its
successor (When a successor fails, a node uses its locally available information to set its
successor pointer to the failed node’s successor). In this scenario, messages routed through
A to keys maintained by D will skip over node D and will be incorrectly forwarded to
node C. A more complex routing algorithm that allows for backtracking may avoid this
scenario, but such tweaks come at the risk of routing loops [35]. More generally, such
routing inconsistencies jeopardize connectivity and may lead to system partitions.

Both violations occur for keys in DHTs, e.g., one study of OpenDHT found that on average
5% of the keys are owned by multiple nodes simultaneously even in settings with low
churn [31]. The two examples given above illustrate how such a scenario may occur in
the context of a Chord-like system, but these issues are known to affect all types of self-
organizing systems in deployment [12].

Needless to say, inconsistent naming and routing can make it challenging for developers
to understand and use a DHT. Inconsistent naming and routing also complicates system
performance. For example, if a particular key becomes a hotspot, we may wish to shift the
load from nearby keys to other nodes, and potentially to shift responsibility for managing
the key to a well-provisioned node. In a traditional DHT, however, doing so would increase
the likelihood of naming and routing inconsistencies. Similarly, if a popular key happens
to land on a node that is likely to exit the system shortly (e.g., because it only recently
joined), we can improve overall system availability by changing the key’s assignment to a
better provisioned, more stable node, but only if we can make assignment changes reliably
and consistently.

One approach to addressing these anomalies is to broadcast all node join and leave events
to all nodes in the system, as in Dynamo. This way, every node has an eventually consis-
tent view of its key-range, at some scalability cost. Since key storage in Dynamo is only
eventually consistent, applications must already be written to tolerate temporary incon-
sistency. Further, since all nodes in the DHT know the complete set of nodes participating
in the DHT, routing is simplified.

Coordination Services: In enterprise settings, applications desiring strong consistency
and high availability use coordination services such as Chubby [2] or ZooKeeper [14]. These

services use rigorous distributed algorithms with provable properties to implement strong
consistency semantics even in the face of failures. For instance, ZooKeeper relies on an
atomic broadcast protocol, while Chubby uses the Paxos distributed consensus algorithm
[18] for fault-tolerant replication and agreement on the order of operations.

Coordination services are, however, scale-limited as every update to a replicated data ob-
ject requires communication with some quorum of all nodes participating in the service;
therefore the performance of replication protocols rapidly degrades as the number of par-
ticipating nodes increases (see Figure 9(a) and [14]). Scatter is designed with the following
insight: what if we had many instances of a coordination service, cooperatively managing
a large scale storage system?

3. SCATTER OVERVIEW
We now describe the design of Scatter, a scalable consistent storage layer designed to
support very large scale peer-to-peer systems. We discuss our goals and assumptions,
provide an overview of the structure of Scatter, and then discuss the technical challenges
in building Scatter.

3.1 Goals and Assumptions
Scatter has three primary goals:

1. Consistency: Scatter provides linearizable consistency semantics for operations on a
single key/value pair, despite (1) lossy and variable-latency network connections, (2)
dynamic system membership including uncontrolled departures, and (3) transient,
asymmetric communication faults.

2. Scalability: Scatter is designed to scale to the largest deployed DHT systems with
more than a million heterogeneous nodes with diverse churn rates, computational
capacities, and network bandwidths.

3. Adaptability: Scatter is designed to be self-optimizing to a variety of dynamic
operating conditions. For example, Scatter reconfigures itself as nodes come and go
to preserve the desired balance between high availability and high performance. It
can also be tuned to optimize for both WAN and LAN environments.

Our design is limited in the kinds of failures it can handle. Specifically, we are not robust to
malicious behavior, such as Byzantine faults and denial of service attacks, nor do we provide
a mechanism for continued operation during pervasive network outages or correlated and
widespread node outages. We leave adding these features to future work.

3.2 Design Overview
While existing systems partially satisfy some of our requirements outlined in the preceding
paragraphs, none exhibit all three. Therefore, we set out to design a new system, Scatter,
that synthesizes techniques from a spectrum of distributed storage systems.

The first technique we employ to achieve our goals is to use self-managing sets of nodes,
which we term groups, rather than individual nodes as building blocks for the system.
Groups internally use a suite of replicated state machine (RSM) mechanisms [33] based
on the Paxos consensus algorithm [18] as a basis for consistency and fault-tolerance. Scat-
ter also implements many standard extensions and optimizations [5] to the basic Paxos
algorithm, including: (a) an elected leader to initiate actions on behalf of the group as a
whole, and (b) reconfiguration algorithms [19] to both exclude failed members and include
new members over time.

group
node

overlay
keyspace

keyrange

Figure 2: Overview of Scatter architecture

As groups maintain internal integrity using consensus protocols with provable properties,
a simple and aggressive failure detector suffices. Nodes that are excluded from a group
after being detected as failed can not influence any future actions of the group. On the
other hand, the failure to quickly detect a failed node will not impede the liveness of the
group because only a quorum of the current members are needed to make progress.

Scatter implements a simple DHT model in which a circular key-space is partitioned among
groups (see Figure 2). Each group maintains up-to-date knowledge of the two neighboring
groups that immediately precede and follow it in the key-space. These consistent lookup
links form a global ring topology, on top of which Scatter layers a best-effort routing policy
based on cached hints. If this soft routing state is stale or incomplete, then Scatter relies
on the underlying consistent ring topology as ground truth.

Carefully engineered groups go a long way to meeting our stated design goals for Scatter.
However, a system composed of some static set of groups will be inherently limited in
many ways. For example, if there is a burst of failures or sufficient disparity between
the rate of leaves and joins for a particular group, then that group is at risk of losing a
functional quorum. Not only is a static set of groups limited in robustness, but it is also
restricted in both scalability and the ability to adapt gracefully to dynamic conditions. For
instance, the performance of consensus algorithms degrades significantly as the number of
participants increases. Therefore, a static set of groups will not be able to incrementally
scale with the online addition of resources. As another example, if one group is responsible
for a hotspot in the key-space, it needs some way of coordinating with other groups, which
may be underutilized, to alleviate the hotspot.

Therefore, we provide mechanisms to support the following multi-group operations:

• split: partition the state of an existing group into two groups.
• merge: create a new group from the union of the state of two neighboring groups.
• migrate: move members from one group to a different group.
• repartition: change the key-space partitioning between two adjacent groups.

Although our approach is straightforward and combines well-known techniques from the
literature, we encountered a number of technical challenges that may not be apparent from
a cursory inspection of the high-level design.

Atomicity: Multi-group operations modify the routing state across multiple groups, but
as we discussed in Section 2, strong consistency is difficult or impossible to guarantee when
modifications to the routing topology are not atomic. Therefore, we chose to structure each
multi-group operation in Scatter as a distributed transaction. We illustrate this design
pattern, which we call nested consensus, in Figure 3. We believe that this general idea
of structuring protocols as communication between replicated participants, rather than
between individual nodes, can be applied more generally to the construction of scalable,
consistent distributed systems.

Nested consensus uses a two-tiered approach. At the top tier, groups execute a two-phase
commit protocol (2PC), while within each group the actions that the group takes are
agreed on using consensus protocols. Multi-group operations are coordinated by whichever
group decides to initiate the transaction as a result of some local policy. As Scatter is
decentralized, multiple groups can concurrently initiate conflicting transactions. Section 4
details the mechanisms used to coordinate distributed transactions across groups.

Performance: Strong consistency in distributed systems is commonly thought to come
with an unacceptably high performance or availability costs. The challenge of maximiz-
ing system performance influenced every level of Scatter’s design and implementation —
whether defined in terms of latency, throughput, or availability — without compromising
core integrity. Although many before us have shown that strongly consistent replication
techniques can be implemented efficiently at small scale, the bigger challenge for us was
the additional layer of “heavy-weight” mechanisms — distributed transactions — on top
of multiple instantiations of independent replicated state machines.

Self Organization: Our choice of complete decentralization makes the design of policies
non-trivial. In contrast to designs in which a system deployment is tuned through human
intervention or an omnipotent component, Scatter is tuned by the actions of individual
groups using local information for optimization. Section 6 outlines various techniques for
optimizing the resilience, performance, and load-balance of Scatter groups using local or
partially sampled non-local information.

4. GROUP COORDINATION
In this section, we describe how we use nested consensus to implement multi-group oper-
ations. Section 4.1 characterizes our requirements for a consistent and available overlay
topology. Section 4.2 details the nested consensus technique, and Section 4.3 walks through
a concrete example of the group split operation.

4.1 Overlay Consistency Requirements
Scatter’s overlay was designed to solve the consistency and availability problems discussed
in Section 2. As Scatter is defined in terms of groups rather than nodes, we will slightly

Within each group, nodes
coordinate using a Paxos-based

replicated state machine

Groups coordinate distributed
transactions using a two-phase

commit protocol

G1 G2

G3

Paxos

Two-phase
commit

Paxos Paxos

Figure 3: Overview of nested consensus. Groups coordinate distributed trans-
actions using a two-phase commit protocol. Within each group, nodes coordi-
nate using the Paxos distributed consensus algorithm.

rephrase the assignment consistency correctness condition as the following system invari-
ant: groups that are adjacent in the overlay agree on a partitioning of the key-space between
them. For individual links in the overlay to remain highly available, Scatter maintains an
additional invariant: a group can always reach its adjacent groups. Although these invari-
ants are locally defined they are sufficient to provide global consistency and availability
properties for Scatter’s overlay.

We can derive further requirements from these conditions for operations that modify either
the set of groups, the membership of groups, or the partitioning of the key-space among
groups. For instance, in order for a group Ga to be able to communicate directly with an
adjacent groupGb, Ga must have knowledge of some subset ofGb’s members. The following
property is sufficient, but perhaps stronger than necessary, to maintain this connectivity:
every adjacent group of Gb has up-to-date knowledge of the membership of Gb. This
requirement motivated our implementation of operations that modify the membership of
a group Gb to be eagerly replicated across all groups adjacent to Gb in the overlay.

In keeping with our goal to build on classic fault-tolerant distributed algorithms rather than
inventing ad-hoc protocols, we chose to structure group membership updates as distributed
transactions across groups. This approach not only satisfied our requirement of eager
replication but provided a powerful framework for implementing the more challenging
multi-group operations such as group splits and merges. Consider, for example, the
scenario in Figure 4 where two adjacent groups, G1 and G2, propose a merge operation
simultaneously. To maintain Scatter’s two overlay consistency invariants, the adjacent
groups G0 and G4 must be involved as well. Note that the changes required by G1’s
proposal and G2’s proposal conflict — i.e., if both operations were executed concurrently
they would violate the structural integrity of the overlay. These anomalies are prevented
by the atomicity and concurrency control provided by our transactional framework.

4.2 Nested Consensus

G0
G1 G2 G3

G4
k1

k2 k3 k4

G0

G1UG2 G3
G4

k1
k3 k4

G2UG3

G0
G1

G4
k1

k2 k4

Figure 4: Scenario where two adjacent groups, G1 and G2, propose a merge
operation simultaneously. G1 proposes a merge of G1 and G2, while G2 proposes
a merge of G2 and G3. These two proposals conflict.

Scatter implements distributed transactions across groups using a technique we call nested
consensus (Figure 3). At a high level, groups execute a two-phase commit protocol (2PC);
before a group executes a step in the 2PC protocol it uses the Paxos distributed consensus
algorithm to internally replicate the decision to execute the step. Thus distributed repli-
cation plays the role of write-ahead logging to stable storage in the classic 2PC protocol.

We will refer to the group initiating a transaction as the coordinator group and to the
other groups involved as the participant groups. The following sequence of steps loosely
captures the overall structure of nested consensus:

1. The coordinator group replicates the decision to initiate the transaction.
2. The coordinator group broadcasts a transaction prepare message to the nodes of the

participant groups.
3. Upon receiving the prepare message, a participant group decides whether or not to

commit the proposed transaction and replicates its vote.
4. A participant group broadcasts a commit or abort message to the nodes of the coor-

dinator group.
5. When the votes of all participant groups is known, the coordinator group replicates

whether or not the transaction was committed.
6. The coordinator group broadcasts the outcome of the transaction to all participant

groups.
7. Participant groups replicate the transaction outcome.
8. When a group learns that a transaction has been committed then it executes the

steps of the proposed transaction, the particulars of which depend on the multi-
group operation.

PREPARE

COMMITTED

G2G1 G3

G2a G2b

PREPARED

COMMITTED

PREPARED

COMMITTED

t0
t1

t2
t3

Figure 5: Group G2 splits into two groups, G2a and G2b. Groups G1, G2, and
G3 participate in the distributed transaction. Causal time advances vertically,
and messages between groups are represented by arrows. The cells beneath
each group name represent the totally-ordered replicated log of transaction
steps for that group.

Note that nested consensus is a non-blocking protocol. Provided a majority of nodes in
each group remain alive and connected, the two phase commit protocol will terminate.
Even if the previous leader of the coordinating group fails, another node can take its
place and resume the transaction. This is not the case for applying two phase commit to
managing routing state in a traditional DHT.

In our implementation the leader of a group initiates every action of the group, but we note
that a judicious use of broadcasts and message batching lowers the apparently high number
of message rounds implied by the above steps. We also think that the large body of work
on optimizing distributed transactions could be applied to further optimize performance
of nested consensus, but our experimental evaluations in Section 7 show that performance
is reasonable even with a relatively conservative implementation.

Our implementation encourages concurrency while respecting safety. For example, the
storage service (Section 5) continues to process client requests during the execution of
group transactions except for a brief period of unavailability during any reconfiguration
required by a committed transaction. Also, groups continue to serve lookup requests during
transactions that modify the partitioning of the key-space provided that the lookups are
serialized with respect to the transaction commit.

To illustrate the mechanics of nested consensus, the remainder of the section walks through
an example group split operation and then considers the behavior of this mechanism in
the presence of faults and concurrent transactions.

4.3 Example: Group Split
Figure 5 illustrates three groups executing a split transaction. For clarity, this example
demonstrates the necessary steps in nested consensus in the simplest case — a non-faulty
leader and no concurrent transactions. At t0, G2 has replicated its intent to split into
the two groups G2a and G2b and then sends a 2PC prepare message to G1 and G3. In

parallel, G1 and G3 internally replicate their vote to commit the proposed split before
replying to G0. After each group has learned and replicated the outcome (committed) of
the split operation at time t3, then the following updates are executed by the respective
group: (1) G1 updates its successor pointer to G2a, (2) G3 updates its predecessor pointer
to G2b, and (3) G2 executes a replicated state machine reconfiguration to instantiate the
two new groups which partition between them G2’s original key-range and set of member
nodes.

To introduce some of the engineering considerations needed for nested consensus, we con-
sider the behavior of this example in more challenging conditions. First, suppose that
the leader of G1 fails after replicating intent to begin the transaction but before sending
the prepare messages to the participant groups. The other nodes of G1 will eventually
detect the leader failure and elect a new leader. When the new leader is elected, it behaves
just like a restarted classical transaction manager: it queries the replicated write-ahead
log and continues executing the transaction. We also implemented standard mechanisms
for message timeouts and re-deliveries, with the caveat that individual steps should be
implemented so that they are idempotent or have no effect when re-executed.

We return to the question of concurrency control. Say that G1 proposed a merge operation
with G2 simultaneously with G2’s split proposal. The simplest response is to enforce
mutual exclusion between transactions by participant groups voting to abort liberally. We
implemented a slightly less restrictive definition of conflicting multi-group operations by
defining a lock for each link in the overlay. Finer-grained locks reduce the incidence of
deadlock; for example, two groups, G1 and G3, that are separated by two hops in the
overlay would be able to update their membership concurrently; whereas with complete
mutual exclusion these two operations would conflict at the group in the middle (G2).

5. STORAGE SERVICE
A consistent and scalable lookup service provides a useful abstraction onto which richer
functionality can be layered. This section describes the storage service that each Scatter
group provides for its range of the global key-space. To evaluate Scatter, we implemented
a peer-to-peer Twitter-like application layered on a standard DHT-interface. This allowed
us to do a relatively direct comparison with OpenDHT in Section 7.

As explained in Section 4, each group uses Paxos to replicate the intermediate state needed
for multi-group operations. Since multi-group operations are triggered by environmental
changes such as churn or shifts in load, our design assumes these occur with low frequency
in comparison to normal client operations. Therefore Scatter optimizes each group to
provide low latency and high throughput client storage.

To improve throughput, we partition each group’s storage state among its member nodes
(see Figure 6). Storage operations in Scatter take the form of a simple read or write on
an individual key. Each operation is forwarded to the node of the group assigned to a
particular key – referred to as the primary for that key.

The group leader replicates information regarding the assignment of keys to primaries
using Paxos, as it does with the state for multi-group operations. The key assignment is
cached as soft state by the routing service in the other Scatter groups. All messages are
implemented on top of UDP, and Scatter makes no guarantees about reliable delivery or
ordering of client messages. Once an operation is routed to the correct group for a given
key, then any node in the group will forward the operation to the appropriate primary.
Each primary uses Paxos to replicate operations on its key-range to all the other nodes
in the group – this provides linearizability. Our use of the Paxos algorithm in this case
behaves very much like other primary-backup replication protocols – a single message round

a b

c

ka kd

ka kb kc kd

a b c

Figure 6: Example Scatter group composed of three nodes (a, b, c) and assigned
to the key-range [ka, kd). The group’s key-range is partitioned such that each
node of the group is the primary for some subset of the group’s key-space.
The primary of a key-range owns those keys and both orders and replicates
all operations on the keys to the other nodes in the group; e.g., a is assigned
[ka, kb] and replicates all updates to these keys to b and c using Paxos.

usually suffices for replication, and operations on different keys and different primaries are
not synchronized with respect to each other.

In parliamentary terms [18], the structure within a group can be explained as follows.
The group nodes form the group parliament which elects a parliamentary leader and then
divides the law into disjoint areas, forming a separate committee to manage each resulting
area of the law independently. All members of parliament are also a member of every
committee, but each committee appoints a different committee chair (i.e., the primary)
such that no individual member of parliament is unfairly burdened in comparison to his
peers. Because the chair is a distinguished proposer in his area, in the common case only a
single round of messages is required to pass a committee decree. Further, since committees
are assigned to disjoint areas of the law, decrees in different committees can be processed
concurrently without requiring a total ordering of decrees among committees.

In addition to the basic mechanics described in this section and the previous section,
Scatter implements additional optimizations including:

• Leases: Our mechanisms for delegating keys to primaries does not require time-
based leases; however, they can be turned on for a given deployment. Leases allow
primaries to satisfy reads without communicating to the rest of the group; however,
the use of leases can also delay the execution of certain group operations when a
primary fails.

• Diskless Paxos: Our implementation of Paxos does not require writing to disk.
Nodes that restart just rejoin the system as new nodes.

• Relaxed Reads: All replicas for a given key can answer read requests from local –
possibly stale – state. Relaxed reads violate linearizability, but are provided as an
option for clients.

6. SAMPLE POLICIES

Load
Balance Latency Resilience

Low churn
Uniform latency X

Low churn
Non-uniform latency X X

High churn
Non-uniform latency X X X

Table 1: Deployment settings and system properties that a Scatter policy may
target. A X indicates that we have developed a policy for the combination of
setting and property.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 2 4 6 8 10 12

G
ro

up
 F

ai
lu

re
 P

ro
ba

bi
lit

y

Group size

µ=100s
µ=500s

Figure 7: Impact of group size on group failure probability for two Pareto
distributed node churn rates, with average lifetimes µ = 100s and µ = 500s.

An important property of Scatter’s design is the separation of policy from mechanism.
For example, the mechanism by which a node joins a group does not prescribe how the
target group is selected. Policies enable Scatter to adapt to a wide range of operating
conditions and are a powerful means of altering system behavior with no change to any of
the underlying mechanisms.

In this section we describe the policies that we have found to be effective in the three
experimental settings where we have deployed and evaluated Scatter (see Section 7). These
are: (1) low churn and uniform network latency, (2) low churn and non-uniform network
latency, and (3) high churn and non-uniform network latency. Table 1 lists each of these
settings, and three system properties that a potential policy might optimize. A X in
the table indicates that we have developed a policy for the corresponding combination of
deployment setting and system property. We now describe the policies for each of the
three system properties.

6.1 Resilience
Scatter must be resilient to node churn as nodes join and depart the system unexpectedly.
A Scatter group with 2k+ 1 nodes guarantees data availability with up to k node failures.
With more than k failures, a group cannot process client operations safely. To improve
resilience, Scatter employs a policy that prompts a group to merge with an adjacent group
if its node count is below a predefined threshold. This maintains high data availability and
helps prevent data loss. This policy trades-off availability for performance since smaller
groups are more efficient.

To determine the appropriate group size threshold we carried out a simulation, parame-

terized with the base reconfiguration latency plotted in Figure 12(b). Figure 7 plots the
probability of group failure for different group sizes for two node churn rates with node
lifetimes drawn from heavy-tailed Pareto distributions observed in typical peer-to-peer
systems [3, 32]. The plot indicates that a modest group size of 8-12 prevents group failure
with high probability.

The resilience policy also directs how nodes join the system. A new node samples k random
groups and joins the group that is most likely to fail. The group failure probability is
computed using node lifetime distribution information, if available. In the absence of
this data, the policy defaults to having a new node join the sampled group with the fewest
nodes. The default policy also takes into account the physical diversity of nodes in a group,
e.g., the number of distinct BGP prefixes spanned by the group. It then assigns a joining
node to a group that has the smallest number of nodes and spans a limited number of BGP
prefixes in order to optimize for both uncorrelated and correlated failures. We performed a
large-scale simulation to determine the impact of the number of groups sampled and found
that checking four groups is sufficient to significantly reduce the number of reconfiguration
operations performed later. If multiple groups have the expected failure probability below
the desired threshold, then the new node picks the target group based on the policy for
optimizing latency as described below.

6.2 Latency
Client latency depends on its time to reach the primary, and the time for the primary to
reach consensus with the other replicas. A join policy can optimize client latency by placing
new nodes into groups where their latencies to the other nodes in the group will be low.
The latency-optimized join policy accomplishes this by having the joining node randomly
select k groups and pass a no-op operation in each of them as a pseudo primary. This allows
the node to estimate the performance of operating within each group. While performing
these operations, nodes do not explicitly join and leave each group. The node then joins
the group with the smallest command execution latency. Note that latency-optimized join
is used only as a secondary metric when there are multiple candidate groups with the
desired resiliency properties. As a consequence, these performance optimizations are not
at the cost of reduced levels of physical diversity or group robustness. Experiments in
Section 7.1.1 compare the latency-optimized join policy with k = 3 against the random
join policy.

The latency-optimized leader selection policy optimizes the RSM command latency in a
different way – the group elects the node that has the lowest Paxos agreement latency as
the leader. We evaluate the impact of this policy on reconfiguration, merge, and split costs
in Section 7.1.3.

6.3 Load Balance
Scatter also balances load across groups in order to achieve scalable and predictable per-
formance. A simple and direct method for balancing load is to direct a new node to join
the group that is heavily loaded. The load-balanced join policy does exactly this – a joining
node samples k groups, selects groups that have low failure probability, and then joins the
group that has processed the most client operations in the recent past. The load-balance
policy also repartitions the keyspace among adjacent groups when the request load to their
respective keyspaces is skewed. In our implementation, groups repartition their keyspaces
proportionally to their respective loads whenever a group’s load is a factor of 1.6 or above
that of its neighboring group. As this check is performed locally between adjacent groups,
it does not require global load monitoring, but it might require multiple iterations of the
load-balancing operation to disperse hotspots. We note that the overall, cumulative effect
of many concurrent locally optimal modifications is non-trivial to understand. A thorough
analysis of the effect of local decisions on global state is an intriguing direction for future

work.

7. EVALUATION
We evaluated Scatter across three deployment environments, corresponding to the churn/latency
settings listed in Table 1: (1) single cluster: a homogeneous and dedicated Emulab clus-
ter to evaluate the low churn/uniform latency setting; (2) multi-cluster: multiple ded-
icated clusters (Emulab and Amazon’s EC2) at LAN sites connected over the wide-area
to evaluate the low churn/non-uniform latency setting; (3) peer-to-peer: machines from
PlanetLab in the wide-area to evaluate the high churn/non-uniform latency setting.

EC2-West EC2-East

Emulab

82ms

38ms 79ms

Figure 8: Inter-site latencies in the multi-cluster setting used in experiments.

In all experiments Scatter ran on a single core on a given node. On Emulab we used
150 nodes with 2.4GHz 64-bit Xeon processor cores. On PlanetLab we used 840 nodes,
essentially all nodes on which we could install both Scatter and OpenDHT.

For multi-cluster experiments we used 50 nodes each from Emulab (Utah), EC2-West
(California) and EC2-East (Virginia). The processors on the EC2 nodes were also 64-bit
processor cores clocked at 2.4GHz. Figure 8 details the inter-site latencies for the multi-
cluster experiments. We performed our multi-cluster experiments using nodes at physically
distinct locations in order to study the performance of our system under realistic wide-area
network conditions.

We used Berkeley-DB for persistent disk-based storage, and a memory cache to pipeline
operations to BDB in the background.

Section 7.1 quantifies specific Scatter overheads with deployments on dedicated testbeds
(single-cluster, multi-cluster). We then evaluate Scatter at large scales on PlanetLab with
varying churn rates in the context of a Twitter-like publish-subscribe application called
Chirp in Section 7.2, and also compare it to a Chirp implementation on top of OpenDHT.

7.1 Microbenchmarks
In this section we show that a Scatter group imposes a minor latency overhead and that
primaries dramatically increase group operation processing throughput. Then, we evaluate
the latency of group reconfiguration, split and merge. The results indicate that group
operations are more expensive than client operations, but the overheads are tolerable since
these operations are infrequent.

7.1.1 Latency
Figure 9 plots a group’s client operation processing latency for single cluster and multi-
cluster settings. The plotted latencies do not include the network delay between the client
and the group. The client perceived latency will have an additional delay component
that is simply the latency from the client to the target group. We present the end-to-end
application-level latencies in Section 7.2.

Figure 9(a) plots client operation latency for different operations in groups of different

 0

 0.5

 1

 1.5

 2

3 5 7 9 11 13 15 7

Ti
m

e
(m

s)

Group Size

Leased Read
Non-Leased Read

Primary Write
Non-Primary Write

(a) Single Cluster

 0

 50

 100

 150

 200

EC2-West EC2-East Emulab

Ti
m

e
(m

s)

Non-Leased Read
Primary Write

Non-Primary Write

(b) Multi-Cluster

Figure 9: Latency of different client operations in (a) a single-cluster deploy-
ment for groups of different sizes, and (b) a multi-cluster deployment in which
no site had a majority of nodes in the group.

 0

 0.2

 0.4

 0.6

 0.8

 1

60 120 180 240 300

C
D

F

Primary Write Latency (ms)

Latency-optimized Join
Random Join

Figure 10: The impact of join policy on write latency in two PlanetLab de-
ployments. The latency-optimized join policy is described in Section 6.2. The
random join policy directs nodes to join a group at random.

sizes. The latency of leased reads did not vary with group size – it is processed locally
by the primary. Non-leased reads were slightly faster than primary writes as they differ
only in the storage layer overhead. Non-primary writes were significantly slower than
primary-based operations because the primary uses the faster leader-Paxos for consensus.

In the multi-cluster setting no site had a node majority. Figure 9(b) plots the latency for

 0

 5000

 10000

 15000

 20000

4 8 12 16

O
pe

ra
tio

ns
/s

ec

Group Size

Primary-Based
Leader-Based

(a) Single Cluster

 0

 5000

 10000

 15000

 20000

4 8 12 16

O
pe

ra
tio

ns
/s

ec

Group Size

Primary-Based
Leader-Based

(b) Multi-cluster

Figure 11: Scatter group throughput in single cluster and multi-cluster set-
tings.

operations that require a primary to coordinate with nodes from at least one other site. As
a result, inter-cluster WAN latency dominates client operation latency. As expected, oper-
ations initiated by primaries at EC2-East had significantly higher latency, while operations
by primaries at EC2-West and Emulab had comparable latency.

To illustrate how policy may impact client operation latency, Figure 10 compares the
impact of latency-optimized join policy with k = 3 (described in Section 6.2) to the random
join policy on the primary’s write latency in a PlanetLab setting. In both PlanetLab
deployments, nodes joined Scatter using the respective policy, and after all nodes joined,
millions of writes were performed to random locations. The effect of the latency-optimized
policy is a clustering of nodes that are close in latency into the same group. Figure 10
shows that this policy greatly improves write performance over the random join policy –
median latency decreased by 45%, from 124ms to 68ms.

Latencies in the PlanetLab deployment also demonstrate the benefit of majority consensus
in mitigating the impact of slow-performing outlier nodes on group operation latency.
Though PlanetLab nodes are globally distributed, the 124ms median latency of a primary
write (with random join policy) is not much higher than that of the multi-cluster setting.
Slow nodes impose a latency cost but they also benefit the system overall as they improve
fault tolerance by consistently replicating state, albeit slowly.

7.1.2 Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Latency (ms)

Failure
Join
Split

Merge

(a) Unoptimized

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Latency (ms)

Failure
Join
Split

Merge

(b) Join and Leader Optimized for Latency

Figure 12: CDFs of group reconfiguration latencies for a P2P setting with two
sets of policies: (a) random join and random leader, and (b) latency-optimized
join and latency-optimized leader.

Figure 11 plots write throughput of a single group in single cluster and multi-cluster set-
tings. Writes were performed on randomly selected segments. Throughput was determined
by varying both the number of clients (up to 20) and the number of outstanding operations
per client (up to 100).

The figure demonstrates the performance benefit of using primaries. In both settings, a
single leader becomes a scalability bottleneck and throughput quickly degrades for groups
with more nodes. This happens because the message overhead associated with executing
a group command is linear in group size. Each additional primary, however, adds extra
capacity to the group since primaries process client operations in parallel and also pipeline
client operations. The result is that in return for higher reliability (afforded by having
more nodes) a group’s throughput decreases only slightly when using primaries.

Though the latency of a typical operation in the multi-cluster deployment is significantly
higher than the corresponding operation in the single cluster setting, group throughput in
the multi-cluster setting (Figure 11(a)) is within 30% of the group throughput in a single
cluster setting (Figure 11(b)). And for large groups this disparity is marginal. The reason
for this is the pipelining of client requests by group primaries, which allows the system to
mask the cost of wide-area network communication.

7.1.3 Reconfiguration, Split, and Merge

We evaluated the latency cost of group reconfiguration, split, and merge operations. In
the case of failure, this latency is the duration between a failure detector sensing a failure
and the completion of the resulting reconfiguration. Table 2 lists the average latencies
and standard deviations for single and multi- cluster settings across thousands of runs and
across group sizes 2-13. These measurements do not account for data transfer latency.

Single cluster Multi-cluster Multi-cluster
(Unopt.) (Opt. leader)

Failure 2.04 ± 0.44 90.9 ± 31.8 55.6 ± 7.6
Join 3.32 ± 0.54 208.8 ± 48.8 135.8 ± 15.2
Split 4.01 ± 0.73 246.5 ± 45.4 178.5 ± 15.1

Merge 4.79 ± 1.01 307.6 ± 69.8 200.7 ± 24.4

Table 2: Group reconfiguration, split, and merge latencies in milliseconds and
standard deviations for different deployment settings.

Basic single cluster latency. In the single cluster setting all operations take less
than 10ms. Splitting and merging are the most expensive operations as they require
coordination between groups, and merging is more expensive because it involves more
groups than splitting.

Impact of policy on multi-cluster latency. The single-cluster setting provides little
opportunity for optimization due to latency homogeneity. However, in the multi-cluster
settings, we can decrease the latency cost with a leader election policy. Table 2 lists
latencies for two multi-cluster deployments, one with a random leader election policy, and
one that used a latency-optimized leader policy described in Section 6.2. From the table,
the latency optimizing policy significantly reduced the latency cost of all operations.

Impact of policy on PlanetLab latency. Figure 12 plots CDFs of latencies for the
PlanetLab deployment. It compares the random join with random leader policies (Fig-
ure 12(a)) against latency-optimized join and latency-optimized leader policies described
in Section 6.2 (Figure 12(b)). In combination, the two latency optimizing policies shift
the CDF curves to the left, decreasing the latency of all operations – reconfiguration, split
and merge.

7.2 Application-level Benchmarks
To study the macro-level behavior of Scatter, we built and deployed Chirp, a Twitter-
like application. In this section we compare PlanetLab deployments of Chirp on top of
Scatter and OpenDHT. We compare our implementation with OpenDHT, which is an
open-source DHT implementation that is currently deployed on PlanetLab. OpenDHT
uses lightweight techniques for DHT maintenance, and its access latencies are comparable
to that of other DHTs [28]. It therefore allows us to evaluate the impact of the more
heavy-weight techniques used in Scatter.

For a fair comparison, both Scatter and OpenDHT send node heartbeat messages every
0.5s. After four consecutive heartbeat failures OpenDHT re-replicates failed node’s keys,
and Scatter reconfigures to exclude the failed node and re-partitions the group’s keyspace
among primaries. Additionally, Scatter used the same base-16 recursive routing algorithm
as is used by OpenDHT. Only forward and reverse group pointers were maintained con-
sistently in Scatter, but it relied on these only when the soft routing state turned out to
be inconsistent. In both systems the replication factor was set to provide at least seven 9s
of reliability, i.e., with an average lifetime of 100 seconds, we use 9 replicas (see Figure 7).

To induce churn we use two different lifetime distributions, Poisson and Pareto. Pareto is

 0

 300

 600

 900

 1200

 1500

 0 200 400 600 800 1000

U
pd

at
e

fe
tc

h
la

te
nc

y
(m

s)

Median session time (secs)

Scatter
OpenDHT

(a) Performance

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Fa
ile

d
fe

tc
he

s
(%

)

Median session time (secs)

OpenDHT
Scatter

(b) Availability

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

M
is

se
d

up
da

te
s

(%
)

Median session time (secs)

OpenDHT
Scatter

(c) Consistency

Figure 13: Impact of varying churn rates for Poisson distributed lifetimes.
The graphs plot measurements for P2P deployments of Chirp for both Scatter
(dashed line), and OpenDHT (solid line).

a typical way of modeling churn in P2P systems [3, 32], and Poisson is a common reference
distribution. For both churn distributions a node’s join policy joined the group with the
lowest expected residual lifetime — for Poisson this is equivalent to joining the group with
the fewest nodes.

7.2.1 Chirp overview
Chirp works much like Twitter; to participate in the system a user u creates a user-name,
which is associated with two user-specific keys, Ku

updates and Ku
follows, that are computed

by hashing u’s user-name. A user may write and post an update, which is at most 140
characters in length; follow another user; or fetch updates posted by the users being
followed. An update by a user u is appended to the value of Ku

updates. When u follows

u′, the key Ku′
updates is appended to Ku

follows, which maintains the list of all users u is
following.

Appending to a key value is implemented as a non-atomic read-modify-write, requiring
two storage operations. This was done to more fairly compare Scatter and OpenDHT. A
key’s maximum value was 8K in both systems. When a key’s value capacity is exceeded
(e.g., a user posts over 57 maximum-sized updates), a new key is written and the new key
is appended to the end of the value of the old key, as a pointer to the continuation of the
list. The Chirp client application caches previously known tails of each list accessed by
the user in order to avoid repeatedly scanning through the list to fetch the most recent
updates. In addition, the pointer to the tail of the list is stored at its header so that a
user’s followers can efficiently access the most recent updates of the user.

 0

 300

 600

 900

 1200

 1500

 0 200 400 600 800 1000

U
pd

at
e

fe
tc

h
la

te
nc

y
(m

s)

Median session time (secs)

Scatter
OpenDHT

(a) Performance

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Fa
ile

d
fe

tc
he

s
(%

)

Median session time (secs)

OpenDHT
Scatter

(b) Availability

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

M
is

se
d

up
da

te
s

(%
)

Median session time (secs)

OpenDHT
Scatter

(c) Consistency

Figure 14: Impact of varying churn rates for Pareto distributed lifetimes (α =
1.1).

We evaluated the performance of Chirp on Scatter and OpenDHT by varying churn, the
distribution of node lifetimes, and the popularity distribution of keys. For the experiments
below, we used workloads obtained from Twitter measurement studies [17, 15]. The mea-
surements include both the updates posted by the users and the structure of the social
network over which the updates are propagated.

7.2.2 Impact of Churn
We first evaluate the performance by using node lifetime distributions that are Poisson
distributed and by varying the mean lifetime value from 100 seconds to 1000 seconds.
We based our lifetime distributions on measurements of real-world P2P systems such as
Gnutella, Kazaa, FastTrack, and Overnet [32, 13, 7, 34]. For this experiment, the up-
date/fetch Chirp workload was synthesized as follows: we played a trace of status updates
derived from the Twitter measurement studies, and for each user u posting an update, we
randomly selected one of u’s followers and issued a request from this user to the newly
posted update. Figure 13 plots performance, availability, and consistency of the fetches in
this workload as we vary churn. Each data point represents the mean value for a million
fetch operations.

Figure 13(a) indicates that the performance of both systems degrades with increasing churn
as routing state becomes increasingly stale, and the probability of the value residing on a
failed node increases. OpenDHT slightly outperforms Scatter in fetch latency because a
fetch in Scatter incurs a round of group communication.

Figure 13(b) shows that Scatter has better availability than OpenDHT. The availability
loss in OpenDHT was often due to the lack of structural integrity, with inconsistent succes-

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

U
pd

at
e

fe
tc

h
la

te
nc

y
(m

s)

Median session time (secs)

OpenDHT
Scatter

(a) Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Normalized Load

OpenDHT
Scatter

(b) Node Load

Figure 15: High load results for Chirp with node churn distributed as
Pareto(α = 1.1). (a) Scatter has better latency than OpenDHT at high loads;
(b) Scatter maintains a more balanced distribution of load among its nodes
than OpenDHT.

sor pointer information or because a key being fetched has not been assigned to any of the
nodes (see Figure 1). To compute the fetch failure for Scatter in Figure 13(b) an operation
was considered to have failed if a response has not been received within three seconds. The
loss of availability for Scatter was because an operation may be delayed for over three sec-
onds when the destination key belonged to a group undergoing reconfiguration in response
to churn.

Figure 13(c) compares the consistency of the values stored in the two systems. OpenDHT’s
inconsistency results confirmed prior studies, e.g., [31] — even at low churn rates over 5%
of the fetches were inconsistent. These inconsistencies stem from a failure to keep replicas
consistent, either because an update to a replica failed or because different nodes have
different views regarding how the keyspace is partitioned. In contrast, Scatter had no
inconsistencies across all experiments.

7.2.3 Heavy tailed node lifetimes
Next, we considered a node lifetime distribution in which nodes are drawn from a heavy-
tailed Pareto distribution that is typical of many P2P workloads. Heavy-tailed distribu-
tions exhibit “memory”, i.e., nodes who have been part of the system for some period of
time are more likely to persist than newly arriving nodes. Scatter provides for a greater
ability to optimize for skewed node lifetime distribution due to its group abstraction. Note

that all of the keys associated with a group are replicated on the same set of nodes,
whereas in OpenDHT each node participates in multiple different replica sets. In this set-
ting, Scatter takes into account the measured residual lifetime distribution in the various
reconfiguration operations, e.g., which group an arriving node should join, when should
groups merge or split, and in determining the optimal size of the group to meet the desired
(seven 9s) availability guarantee. For these experiments the workload was generated in
the same way as the workload used in Section 7.2.2.

OpenDHT slightly outperformed Scatter with respect to access latency (see Figure 14(a)).
However, Scatter’s availability fared better under the heavy-tailed churn rate than that of
OpenDHT (Figure 14(b)). As before, Scatter had no inconsistencies, while OpenDHT was
more inconsistent with the heavy tailed churn rate (Figure 14(c)).

7.2.4 Non-uniform load
In the next experiment, we studied the impact of high load on Scatter. For this experiment,
we batched and issued one million updates from the Twitter trace, and after all of the
updates have been posted, the followers of the selected users fetched the updates. The
fetches were issued in a random order and throttled to a rate of 10,000 fetches per second
for the entire system. Note that in this experiment the keys corresponding to popular
users received more requests, as the load is based on social network properties. The load
is further skewed by the fact that users with a large number of followers are more likely to
post updates [17].

Figure 15(a) shows that Scatter had a slightly better fetch latency than OpenDHT due
to its better load balance properties. However, latency in Scatter tracked OpenDHT’s
latency as in prior experiments (Figures 13(a) and 14(a)).

Figure 15(b) plots the normalized node load for Scatter and OpenDHT. This was computed
in both systems by tracking the total number of fetch requests processed by a node, and
then dividing this number by the mean. The figure shows that Scatter’s load-balance policy
(Section 6.3) is effective at distributing load across nodes in the system. OpenDHT’s load
distribution was more skewed.

7.2.5 Scalability
For our final set of experiments, we evaluated the scalability of Scatter and its ability to
adapt to variations in system load. We also compared Scatter with ZooKeeper, a system
that provides strongly consistent storage. As ZooKeeper is a centralized and scale-limited
system, we built a decentralized system comprising of multiple ZooKeeper instances, where
the global keyspace is statically partitioned across the different instances. We also opti-
mized the performance of this ZooKeeper-based alternative by basing the keyspace par-
titioning on the historical load estimates of the various key values; we split our workload
into two halves, used the first half to derive the keyspace partitioning, and then performed
the evaluations using the second half of the trace. Each ZooKeeper instance comprised of
five nodes. We performed these experiments without node churn, as the system based on
ZooKeeper did not have a management layer for dealing with churn.

Figure 16 plots the average throughput results with standard deviations as we vary the
number of nodes in the system. The throughput of Scatter is comparable to that of the
ZooKeeper-based system for small number of nodes, indicating that Scatter stacks up well
against a highly optimized implementation of distributed consensus. As we increase the
number of nodes, the performance of ZooKeeper-based alternative scales sub-linearly. This
indicates that, even though the keyspace partitioning was derived based on historical work-
load characteristics, the inability to adapt to dynamic hotspots in the access pattern limits
the scalability of the ZooKeeper-based system. Further, the variability in the throughput

100000

200000

300000

400000

 0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (O

ps
/s

ec
)

Number of nodes

Scatter
ZooKeeper

Figure 16: Comparison of Scatter with a system that composes multiple
ZooKeeper instances. The figure provides the throughput of the two systems
as we vary the number of nodes.

also increases with the number of ZooKeeper instances used in the experiment. In contrast,
Scatter’s throughput scales linearly with the number of nodes, with only a small amount
of variability due to uneven group sizes and temporary load skews.

8. RELATED WORK
Our work is made possible by foundational techniques for fault tolerant distributed comput-
ing such as Paxos [18], replicated state machines [33], and transactions [20]. In particular,
our design draws inspiration from the implementation of distributed transactions across
multiple replication groups in Viewstamped Replication [25].

A number of recent distributed systems in industry also rely on distributed consensus
algorithms to provide strongly consistent semantics — such systems provide a low-level
control service for an ecosystem of higher-level infrastructure applications. Well-known
examples of such systems include Google’s Chubby lock service [2] and Yahoo’s ZooKeeper
coordination service [14]. Scatter extends the techniques in such systems to a larger scale.

At another extreme, peer-to-peer systems such as distributed hash tables (DHTs) [26, 30,
22, 29] provide only best-effort probabilistic guarantees, and although targeted at planetary
scale have been found to be brittle and slow in the wild [27, 28]. Still, the large body of
work on peer-to-peer system has numerous valuable contributions. Scatter benefits from
many decentralized self-organizing techniques such as sophisticated overlay routing, and
the extensive measurements on workload and other environmental characteristics in this
body of work (e.g. [11]) are invaluable to the design and evaluation of effective policies [23].

One recent system showing that DHTs are a valuable abstraction even in an industrial
setting is Amazon’s Dynamo [10], a highly available distributed key-value store supporting
one of the largest e-commerce operations in the world. Unlike Scatter, Dynamo chooses
availability over consistency, and this trade-off motivates a different set of design choices.

Lynch et al. [21] propose the idea of using state machine replication for atomic data access
in DHTs. An important insight of this theoretical work is that a node in a DHT can be
made more robust if it is implemented as a group of nodes that execute operations atom-
ically using a consensus protocol. An unsolved question in the paper is how to atomically
modify the ring topology under churn, a question which we answer in Scatter with our
principled design of multi-group operations.

Motivated by the same problems with large scale DHTs (as discussed in Section 2), Castro
et al. developed MSPastry [4]. MSPastry makes the Pastry [30] design more dependable,
without sacrificing performance. It does this with robust routing, active probes, and per-
hop acknowledgments. A fundamental difference between MSPastry and Scatter is that
Scatter provides provable consistency guarantees. Moreover, Scatter’s group abstraction
can be reused to support more advanced features in the future, such as consistency of
multi-key operations.

Although we approached the problem of scalable consistency by starting with a clean slate,
other approaches in the literature propose mechanisms for consistent operations layered
on top of a weakly-consistent DHT. Etna [24] is a representative system of this approach.
Unfortunately such systems inherit the structural problems of the underlying data system,
resulting in lower object availability and system efficiency. For example, inconsistencies
in the underlying routing protocol will manifest as unavailability at the higher layers (see
Figures 13(b) and 14(b)).

9. CONCLUSION
This paper presented the design, implementation and evaluation of Scatter — a scalable
distributed key-value storage system that provides clients with linearalizable semantics.
Scatter organizes computing resources into fault-tolerant groups, each of which indepen-
dently serve client requests to segments of the keyspace. Groups employ self-organizing
techniques to manage membership and to coordinate with other groups for improved per-
formance and reliability. Principled and robust group coordination is the primary contri-
bution of our work.

We presented detailed evaluation results for various deployments. Our results demonstrate
that Scatter is efficient in practice, scales linearly with the number of nodes, and provides
high availability even at significant node churn rates. Additionally, we illustrate how
Scatter provides tunable knobs to effectively adapt to the different deployment settings for
significant improvements in load balance, latency, and resilience.

Acknowledgments. This work was supported in part by grant CNS-0963754 from the
National Science Foundation. We would like to thank Vjekoslav Brajkovic and Justin
Cappos for their contributions to earlier versions of Scatter. We would also like to thank
our shepherd Ant Rowstron and the anonymous reviewers for their feedback.

10. REFERENCES
[1] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,

A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In Proc. of CIDR, 2011.

[2] M. Burrows. The Chubby lock service for loosely-coupled distributed systems. In
Proc. of OSDI, 2006.

[3] F. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and its role in P2P
protocols. In Proc. of IEEE WCW, 2003.

[4] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of
structured peer-to-peer overlays. In Proc. of DSN, 2004.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos Made Live: An Engineering
Perspective. In Proc. of PODC, 2007.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System
for Structured Data. ACM Transactions on Computer Systems, 26(2), 2008.

[7] J. Chu, K. Labonte, and B. N. Levine. Availability and Locality Measurements of
Peer-To-Peer File Systems. In Proc. of ITCom, 2002.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s Hosted Data
Serving Platform. Proc. VLDB Endow., 1:1277–1288, August 2008.

[9] J. Dean. Large-Scale Distributed Systems at Google: Current Systems and Future
Directions, 2009.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proc. of SOSP, 2007.

[11] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson. Profiling a
Million User DHT. In Proc. of IMC, 2007.

[12] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-transitive
connectivity and DHTs. In Proc. of WORLDS, 2005.

[13] P. K. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan.
Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload. In
Proc. of SOSP, 2003.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-Free
Coordination for Internet-scale systems. In Proc. of USENIX ATC, 2010.

[15] J. Yang and J. Leskovec. Temporal Variation in Online Media. In Proc. of WSDM,
2011.

[16] J. Kubiatowicz, D. Bindel, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale Persistent Storage. In Proc. of
ASPLOS, 2000.

[17] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a
news media? In Proc. of WWW, 2010.

[18] L. Lamport. The Part-Time Parliament. ACM Transactions on Computer Systems,
16(2), 1998.

[19] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a State Machine. ACM
SIGACT News, 41(1), 2010.

[20] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage
system. Technical report, Xerox Parc, 1976.

[21] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access in Distributed Hash
Tables. In Proc. of IPTPS, 2002.

[22] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In Proc. of IPTPS, 2002.

[23] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10), 2001.

[24] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A fault-tolerant algorithm for
atomic mutable DHT data. Technical Report MIT-LCS-TR-993, MIT, June 2005.

[25] B. M. Oki and B. H. Liskov. Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems. In Proc. of PODC, 1988.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In Proc. of SIGCOMM, 2001.

[27] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker. Fixing the Embarrassing
Slowness of OpenDHT on PlanetLab. In Proc. of WORLDS, 2005.

[28] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In
Proc. of USENIX ATC, 2004.

[29] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In Proc. of SIGCOMM,
2005.

[30] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. of Middleware, 2001.

[31] S. Sankararaman, B.-G. Chun, C. Yatin, and S. Shenker. Key Consistency in DHTs.
Technical Report UCB/EECS-2005-21, UC Berkeley, 2005.

[32] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement Study of Peer-to-Peer File
Sharing Systems. In Proc. of MMCN, 2002.

[33] F. B. Schneider. Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Surveys, 22(4), 1990.

[34] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across Large Networks.
IEEE/ACM Transactions on Networking, 2004.

[35] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. Technical Report MIT-LCS-TR-819, MIT, Mar 2001.

[36] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking, 11(1), 2003.

