
Thisis a PDF version with notes. You can find the PPTX version at 
http://www.cse.iitd.ernet.in/~sbansal/talks/btkernel.pptx

1



Firstly, whatis Dynamic Binary Translation and what is it used for. Dynamic Binary 
Translation or DBT is the technique to transform the code as it executes, and this is 
done for a variety of purposes. Some examples are OS virtualization, testing and 
verification of compiled programs, profiling and debugging, software fault isolation, 
dynamic optimizations, program shepherding, and many more. DBT is used for a 
variety of purposes in various application domains.

2



Hereis a short introduction to how Dynamic Binary Translation, or DBT, works. 
Execution typically starts at the dispatcher, which translates one basic block at a 
time, and transfers control to it. The block executes, but terminates with a branch to 
dispatcher instruction, thus returning control back to the dispatcher. This loop 
continues forever.

Of course, translating every basic block on every execution is expensive, and so 
translation is typically done only once, and then cached for future executions in a 
code cache.

3



Beforetranslating a block, the dispatcher first checks if the block is already cached. If 
so, it jumps to it. Else, it takes the slower path of actual translation. Because a piece 
of code usually executes thousands, millions or even billions of times, the small cost 
of one-time translation is easily amortized.

4



User-levelDBT is relatively well understood, and many previous works have 
demonstrated near-native performance for several application-level workloads.

Kernel-level DBT however requires mechanisms to also efficiently handle exceptions 
and interrupts. The problem is bigger at the kernel-level because the expected rate 
of interrupts and exceptions in the kernel is significantly higher than the expected 
rate of signals in user-level processes.

Current kernel-level binary translators simply import the signal-handling 
mechanisms used at user-level, to the kernel. As I will show next, this imposes huge 
overheads on many performance-critical applications. Some case studies that we 
look at are the ±ƳǿŀǊŜΩǎsoftware virtualization platform which uses DBT to 
virtualize the guest OS, and DynamoRio-Kernel, which implements DBT-based 
instrumentation for the kernel.

5



I next discuss in more detail how kernel-level DBT works. DBT is typically 
implemented through a loadable kernel module. For full translationcoverage, a DBT 
module needs to interpose on all the entry points of a kernel, i.e., all the gates from 
which execution can enter the kernel.

6



For example, this means, that it needs to interpose on all entries through the 
interrupt descriptor table. Hence the original interrupt descriptor table which points 
to the appropriate handlers needs to be replaced with another shadow table that 
now points to the dispatcher instead.

7



[ŜǘΩǎ ƭƻƻƪin more detail at what does a dispatcher do, on an entry through the 
interrupt descriptor table. Before transferring control to the code cache, the 
dispatcher first converts interrupt state on stack pushed by hardware to its native 
values.

8



Here is a figure showing the program counter PC pushed by hardware on stack. 
Notice that with DBT, the pushed address will always be a code cache address, and 
the dispatcher is required to convert it into its corresponding native guest value. This 
is required so that if the guest ever inspects the stack, it always observes expected 
values there.

9



Thesecond thing that the dispatcher does is emulating precise exceptions.

10



A precise exception is the property of an architecture, whereby the hardware 
guarantees that before the execution of an exception handler, all instructions up to 
the executing instruction should have executed and everything afterwards must not 
have executed.

11



For example, if an exceptionoccurred in the middle of the execution of a push 
instruction, all earlier changes made by this instruction are undone, or rolled back, 
before transferring control to the exception handler.

In a binary translated environment, a single guest instruction could be translated to 
multiple host instructions. If an exception occurs at one of these host instructions, 
all state updates made by the previous instructions need to be rolled back. This 
involves not just a direct cost of emulating the precise exception, but also the 
indirect cost of having to structure a translation such that it can be rolled back.

12


