
From L3 to seL4
What Have We Learnt in 20 Years of L4 Microkernels?

Kevin Elphinstone and Gernot Heiser
NICTA and UNSW, Sydney

{kevin.elphinstone,gernot}@nicta.com.au

Abstract
The L4 microkernel has undergone 20 years of use and
evolution. It has an active user and developer commu-
nity, and there are commercial versions which are de-
ployed on a large scale and in safety-critical systems.
In this paper we examine the lessons learnt in those 20
years about microkernel design and implementation. We
revisit the L4 design papers, and examine the evolution
of design and implementation from the original L4 to the
latest generation of L4 kernels, especially seL4, which
has pushed the L4 model furthest and was the first OS
kernel to undergo a complete formal verification of its
implementation as well as a sound analysis of worst-case
execution times. We demonstrate that while much has
changed, the fundamental principles of minimality and
high IPC performance remain the main drivers of design
and implementation decisions.

1 Introduction
Twenty years ago, Liedtke [1993a] demonstrated with
his L4 kernel that microkernel IPC could be fast, a factor
10–20 faster than other contemporary microkernels.

Microkernels minimize the functionality that is pro-
vided by the kernel: the kernel provides a set of general
mechanisms, while user-mode servers implement the ac-
tual operating system (OS) services [Levin et al., 1975].
User code obtains a system service by communicating
with servers via an inter-process communication (IPC)
mechanism, typically message passing. Hence, IPC is

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522720

on the critical path of any service invocation, and low
IPC costs are essential.

By the early ’90s, IPC performance had become the
achilles heel of microkernels: typical cost for a one-
way message was around 100 µs, which was too high
for building performant systems, with a resulting trend
to move core services back into the kernel [Condict
et al., 1994]. There were also arguments that high IPC
costs were an (inherent?) consequence of the structure of
microkernel-based systems [Chen and Bershad, 1993].

In this context, the order-of-magnitude improvement
of IPC costs Liedtke demonstrated was quite remark-
able. It was followed by work discussing the philoso-
phy and mechanisms of L4 [Liedtke, 1995, 1996], the
demonstration of a para-virtualized Linux on L4 with
only a few percent overhead [Härtig et al., 1997], the
deployment of L4 kernels on billions of mobile devices
and in safety-critical systems, and, finally, the world’s
first functional correctness proof of an OS kernel [Klein
et al., 2009]. It also had a strong influence on other
research systems, such as Barrelfish [Baumann et al.,
2009].

In this paper we examine the development of L4 over
the last 20 years. Specifically we look at what makes
modern L4 kernels tick, how this relates to Liedtke’s
original design and implementation, and which of his
microkernel “essentials” have passed the test of time.
We specifically examine how the lessons of the past have
influenced the design of the latest generation of L4 mi-
crokernels, exemplified by seL4 [Klein et al., 2009], but
point out where other current L4 versions have made dif-
ferent design decisions.

2 Background

2.1 The L4 Microkernel Family

L4 developed out of an earlier system, called L3, de-
veloped by Liedtke [1993b] in the early 1980s on i386
platforms. L3 was a complete OS with built-in persis-
tence, and it already featured user-mode drivers, still a

133

mailto:kevin.elphinstone@nicta.com.au


93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 

L3 → L4 “X” Hazelnut Pistachio 

L4/Alpha 

L4/MIPS 

seL4 

OKL4 µKernel 

OKL4 Microvisor 

Codezero 

P4 → PikeOS 

Fiasco Fiasco.OC 

L4-embed. 

NOVA GMD/IBM/Karlsruhe 

UNSW/NICTA 

Dresden 

Commercial Clone 

OK Labs 

Figure 1: The L4 family tree (simplified). Black arrows indicate code, green arrows ABI inheritance. Box
colours indicate origin as per key at the bottom left.

characteristic of L4 microkernels. It was commercially
deployed in a few thousand installations (mainly schools
and legal practices). Like all microkernels at the time,
L3 suffered from IPC costs of the order of 100 µs.

Liedtke initially used L3 to try out new ideas, and
what he referred to as “L3” in early publications
[Liedtke, 1993a] was actually an interim version of a
radical re-design. He first used the name “L4” with the
“V2” ABI circulated in the community from 1995.

In the following we refer to this version as the “orig-
inal L4”. Liedtke implemented it completely in assem-
bler on i486-based PCs and soon ported it to the Pen-
tium.

This initial work triggered a twenty-year evolution,
with multiple ABI revisions and from-scratch imple-
mentations, as depicted in Figure 1. It started with
TU Dresden and UNSW re-implementing the ABI (with
necessary adaptations) on 64-bit Alpha and MIPS pro-
cessors, the latter implemented all longer-running oper-
ations in C. Both kernels achieved sub-microsecond IPC
performance [Liedtke et al., 1997a] and were released
as open source. The UNSW Alpha kernel was the first
multiprocessor version of L4.

Liedtke, who had moved from GMD to IBM Wat-
son, kept experimenting with the ABI in what be-
came known as Version X. GMD and IBM imposed
an IP regime which proved too restrictive for other re-
searchers, prompting Dresden to implement a new x86
version from scratch, called Fiasco in reference to their
experience in trying to deal with IP issues. The open-
source Fiasco was the first L4 version written almost

completely in a higher-level language (C++) and is the
oldest L4 codebase still actively maintained. It was the
first L4 kernel with significant commercial use (esti-
mated shipments up to 100,000).

After Liedtke’s move to Karlsruhe, he and his stu-
dents did their own from-scratch implementation (in
C), Hazelnut, which was the first L4 kernel that was
ported (rather than re-implemented) to another architec-
ture (from Pentium to ARM).

Karlsruhe’s experience with Version X and Hazelnut
resulted in a major ABI revision, V4, aimed at improv-
ing kernel and application portability, multi-processor
support and addressing various other shortcomings. Af-
ter Liedtke’s tragic death in 2001, his students im-
plemented the design in a new open-source kernel,
L4Ka::Pistachio (“Pistachio” for short). It was writ-
ten in C++, originally on x86 and PowerPC, and at
UNSW/NICTA we soon after ported it to MIPS, Alpha,
64-bit PowerPC and ARM.1 In most of these ports, less
than 10% of the code changed.

At NICTA we soon re-targeted Pistachio for use
in resource-constrained embedded systems, resulting
in a fork called NICTA::Pistachio-embedded (“L4-
embedded”). It saw massive-scale commercially deploy-
ment when Qualcomm adopted it as a protected-mode
real-time OS for the firmware of their wireless modem
processors. The NICTA spinout Open Kernel Labs took
on the support and further development of the kernel, re-

1There were also Itanium [Gray et al., 2005] and SPARC versions,
but they were never completed.

134



Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 2 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 Core i7 (Bloomfield) 32-bit 2,660 288 0.11
seL4 2013 Core i7 4770 (Haswell) 32-bit 3,400 301 0.09
seL4 2013 ARM11 532 188 0.35
seL4 2013 Cortex A9 1,000 316 0.32

Table 1: One-way IPC cost of various L4 kernels.

named the OKL4 microkernel.2 Another deployed ver-
sion is PikeOS, a commercial V2 clone by Sysgo, cer-
tified for use in safety-critical avionics and deployed in
aircraft and trains.3

The influence of EROS [Shapiro et al., 1999] and in-
creasing security focus resulted in a move to capabil-
ities [Dennis and Van Horn, 1966] for access control,
first with the 2.1 release of OKL4 (2008) and soon fol-
lowed by Fiasco (renamed Fiasco.OC). Aiming for for-
mal verification, which seemed infeasible for a code
base not designed for the purpose, we instead opted for
a from-scratch implementation for our capability-based
seL4 kernel.

The last few years also saw two new designs specifi-
cally aimed to support virtualization as the primary con-
cern, NOVA [Steinberg and Kauer, 2010] from Dresden
and the OKL4 Microvisor [Heiser and Leslie, 2010] from
OK Labs.

A common thread throughout those two decades is
the minimality principle introduced in Section 3.1, and a
strong focus on the performance of the critical IPC op-
eration; kernel implementors generally aim to stay close
to the limits set by the micro-architecture, as shown in
Table 1. Consequently, the L4 community tends to mea-
sure IPC latencies in cycles rather than microseconds,
as this better relates to the hardware limits. In fact,
Section 3.1 provides an interesting view of the context-
switch-friendliness of the hardware (compare the cycle
counts for Pentium 4 and Itanium, both from highly-
optimised IPC implementations!)

2Total deployment is now in the billions, see Open
Kernel Labs press release http://www.ok-labs.com/
releases/release/ok-labs-software-surpasses-milestone-of-1.
5-billion-mobile-device-shipments, January 2012.

3See Sysgo press releases http://www.sysgo.com/.

2.2 Modern representatives

We base our examination of the evolution of L4 design
and evaluation on seL4, which we know well and which
in many ways evolved furthest from the original design.
We note where other recent versions ended up with dif-
ferent designs, and try to understand the reasons behind,
and what this tells us about the degree of agreement
about microkernel design in the L4 community.

Unlike any of the other systems, seL4 is designed
from the beginning to support formal reasoning about
security and safety, while maintaining the L4 tradition
of minimality, performance and the ability to support al-
most arbitrary system architectures.

This led us to a radically new resource-management
model, where all spatial allocation is explicit and di-
rected by user-level code, including kernel memory
[Elkaduwe et al., 2008]. It is also the first protected OS
kernel in the literature with a complete and sound worst-
case execution time (WCET) analysis [Blackham et al.,
2011].

A second relevant system is Fiasco.OC, which is
unique in that it is a code base that has lived through
most of L4 history, starting as a clone of the original ABI
(and not even designed for performance). It has, at some
point in time, supported many different L4 ABI versions,
often concurrently, and is now a high-performance ker-
nel with the characteristics of the latest generation, in-
cluding capability-based access control. Fiasco served
as a testbed for many design explorations, especially
with respect to real-time support [Härtig and Roitzsch,
2006].

Then there are two recent from-scratch designs:
NOVA [Steinberg and Kauer, 2010], designed for
hardware-supported virtualization on x86 platforms,
and the OKL4 Microvisor [Heiser and Leslie, 2010]
(“OKL4” for short), which was designed as a commer-
cial platform for efficient para-virtualization on ARM
processors.

135

http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.sysgo.com/


Name Archi- Size (kLOC)
tecture C/C++ asm Total

Original 486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

Table 2: Source lines of code (SLOC) of various L4
kernels.

3 Microkernel Design
Liedtke [1995] outlines principles and mechanisms
which drove the design of the original L4. We exam-
ine how these evolved over time, and, specifically, how
they compare with the current generation.

3.1 Minimality

The main drivers of Liedtke’s designs were minimality
and IPC performance, with a strong belief that the for-
mer helps the latter. Specifically, he formulated the mi-
crokernel minimality principle:

A concept is tolerated inside the µ-kernel only
if moving it outside the kernel, i.e. permit-
ting competing implementations, would pre-
vent the implementation of the system’s re-
quired functionality [Liedtke, 1995].

This principle, which is a more pointed formulation of
“only minimal mechanisms and no policy in the kernel,”
has continued to be the foundation of the design of L4
microkernels. The discussion in the following sections
will demonstrate the community’s on-going efforts to re-
move features or replace them with more general (and
powerful) ones.

The adherence to this principle can be seen from the
comparison of source code sizes, shown in Table 2:
while it is normal for systems to grow in size over time,
seL4, the latest member of the family (and, arguably, the
one that diverged strongest from the traditional model)
is still essentially the same size as the early versions.4

Verification provided a particular strong motivation for

4In fact, seL4’s SLOC count is somewhat bloated as a consequence
of the C code being mostly a “blind” manual translation from Haskell
[Klein et al., 2009], together with generated bit-field accessor func-
tions, resulting in hundreds of small functions. The kernel compiles
into about 9 k ARM instructions.

minimality, as even 9,000 SLOC pushed the limits of
what was achievable.

Retained: Minimality as key design principle.

Nevertheless, none of the designers of L4 kernels to
date claim that they have developed a “pure” microker-
nel in the sense of strict adherence to the minimality
principle. For example, all of them have a scheduler
in the kernel, which implements a particular scheduling
policy (usually hard-priority round-robin). To date, no-
one has come up with a truly general in-kernel sched-
uler or a workable mechanism which would delegate all
scheduling policy to user-level without imposing high
overhead.

3.2 IPC

We mentioned earlier the importance of IPC perfor-
mance, and that the design and implementation of L4
kernels consistently aimed at maximising it. However,
the details have evolved considerably.

3.2.1 Synchronous IPC

The original L4 supported synchronous (rendezvous-
style) IPC as the only communication, synchronisation,
and signalling mechanism. Synchronous IPC avoids
buffering in the kernel and the management and copy-
ing cost associated with it. It is also a prerequisite for
a number of implementation tricks we will cover later,
specifically the lazy scheduling (Section 4.2), direct pro-
cess switch (Section 4.3), and temporary mapping (Sec-
tion 3.2.2) optimisations.

While certainly minimal, and simple conceptually
and in implementation, experience taught us significant
drawbacks of this model: it forces a multi-threaded de-
sign onto otherwise simple systems, with the resulting
synchronisation complexities. For example, the lack of
functionality similar to UNIX select() required sepa-
rate threads per interrupt source, and a single-threaded
server could not wait for client requests and interrupts at
the same time.

We addressed this in L4-embedded by adding asyn-
chronous notifications, a very simple form of asyn-
chronous IPC. We later refined this model in seL4 as
asynchronous endpoints (AEPs, endpoints will be ex-
plained in Section 3.2.3): sending is non-blocking and
asynchronous to the receiver, who has a choice of block-
ing or polling for a message. Logically, an asynchronous
endpoint is similar to multiple binary semaphores allo-
cated within a single word: Each AEP has a single-word
notification field. A send operation specifies a mask of

136



bits (usually a single bit), which is OR-ed into the notifi-
cation field. Waiting is effectively select() across the
notification field.

In our present design, an asynchronous endpoint can
be bound to a specific thread. If a notification arrives
while the thread is waiting on a synchronous endpoint,
the notification is delivered like a synchronous message
(with an indication that it is really a notification).

In summary, seL4, like most other L4 kernels, re-
tains the model of synchronous IPC but augments it with
asynchronous notification. OKL4 has completely aban-
doned synchronous IPC, and replaced it by virtual IRQs
(essentially asynchronous notifications). NOVA has
augmented synchronous IPC with counting semaphores
[Steinberg and Kauer, 2010], while Fiasco.OC has also
augmented synchronous IPC with virtual IRQs.

Replaced: Synchronous IPC augmented with
(seL4, NOVA, Fiasco.OC) or replaced by (OKL4)
asynchronous notification.

Having two forms of IPC is a violation of minimal-
ity, so the OKL4 approach is more pure in this partic-
ular point (although its channel abstraction constitutes
a different violation, see Section 3.2.2). Furthermore,
the utility of synchronous IPC becomes more dubious in
a multicore context: an RPC-like server invocation se-
quentialises client and server, which should be avoided
if they are running on separate cores. We therefore ex-
pect communication protocols based on asynchronous
notification to become more prevalent, and a move to
asynchronous-only IPC sometime in the future remains
a possibility.

3.2.2 IPC message structure

Original L4 IPC had rich semantics. Besides in-register
(“short”) messages it supported messages of almost ar-
bitrary size (a word-aligned “buffer” as well as multiple
unaligned “strings”) in addition to in-register arguments.
Coupled with the all-synchronous design, this approach
avoids redundant copying.

Register arguments support zero-copy: the kernel al-
ways initiates the IPC from the sender’s context and
switches to the receiver’s context without touching the
message registers.

A drawback is the architecture-dependent and (es-
pecially on x86-32) small size of zero-copy messages.
In fact, the number of available registers changed fre-
quently with ABI changes, as changes to syscall argu-
ments used or freed up registers.

Pistachio introduced the concept of a moderate-size
(configurable in the range of 16–64) set of virtual mes-
sage registers. The implementation mapped some of
them to physical registers, the rest was contained in a

per-thread pinned part of the address space. The pinning
ensures register-like semantics without the possibility of
a page fault. Inlined access functions hide the distinction
between physical and memory-backed registers from the
user. seL4 and Fiasco.OC continue to use this approach.

The motivation is two-fold: Virtual message regis-
ters improve portability across architectures, and more
importantly, they reduce the performance penalty for
moderately-sized messages exceeding the number of
physical registers: copying a small number of words
is cheaper than establishing the temporary mapping in-
volved in “long” IPC, as described below.

The benefits of in-register message transfers has di-
minished over time, as the architectural costs of context
switching dominate IPC performance. For example, in-
register message transfer on the ARM11 improves IPC
performance by 10% (for a 4-word message) compared
to passing via the kernel stack; on Cortex A9 this reduces
to 4%. On x86-32, reserving any registers for message
passing is detrimental to the compiler’s ability to opti-
mise the code.

Replaced: Physical by virtual message registers.

“Long” messages could specify multiple buffers in a
single IPC invocation to amortise the hardware mode-
and context-switch costs. Long messages could be deliv-
ered with a single copy: executing in the sender’s con-
text, the kernel sets up a temporarily mapped window
into the receiver’s address space, covering (parts of) the
message destination, and copies directly to the receiver.

This could trigger a page fault during copying in ei-
ther the source or destination address space, which re-
quired the kernel to handle nested exceptions. Further-
more, the handling of such an exception required in-
voking a user-level page-fault handler. The handler had
to be invoked while the kernel was still handling the
IPC system call, yet the invocation had to pretend that
the fault happened during normal user-mode execution.
On return, the original system-call context had to be re-
established. The result was significant kernel complex-
ity, with many tricky corner cases that risked bugs in the
implementation.

While long IPC provides functionality which cannot
be emulated without some overhead, in practice it was
rarely used: Shared buffers can avoid any explicit copy-
ing between address spaces, and are generally preferred
for bulk data transfer. Additionally, asynchronous inter-
faces can be used for batching of transfers without re-
sorting to explicit batching support in the kernel.

The main use of long IPC was for legacy POSIX read-
write interfaces to servers, which require transferring the
contents of arbitrary buffers to servers who do not neces-
sarily have access to the client’s memory. However, the

137



rise of Linux as POSIX middleware, where Linux effec-
tively shares memory with its applications, replaced this
common use case with pass-by-reference. The remain-
ing use cases either had interface flexibility or could be
implemented with shared memory. Long IPC also vio-
lates the minimality principle (which talks about func-
tionality, not performance).

As a consequence of this kernel complexity and the
existence of user-level alternatives, we removed long
IPC from L4-embedded, and NOVA and Fiasco.OC do
not provide it either.

For seL4 there are even stronger reasons for staying
away from supporting long messages: the formal veri-
fication approach explicitly avoided any concurrency in
the kernel [Klein et al., 2009], and nested exceptions in-
troduce a degree of concurrency. They also break the
semantics of the C language by introducing additional
control flow. While it is theoretically possible to for-
mally reason about nested exceptions, it would make
the already challenging verification task even harder. Of
course, the in-kernel page faults could be avoided with
extra checking, but that would introduce yet more com-
plexity (besides penalising best-case performance), and
would still require a more complex formal model to
prove checking is complete and correct.

Abandoned: Long IPC.

OKL4 diverges at this point, by providing a new, asyn-
chronous, single-copy, bulk-transfer mechanism called
channel [Heiser and Leslie, 2010]. However, this is re-
ally a compromise retained for compatibility with the
earlier OKL4 microkernel, which was aimed at memory-
starved embedded systems. It was used to retrofit pro-
tection boundaries into a highly multithreaded (> 50
threads) real-time application, where a separate commu-
nication page per pair of communicating threads was too
costly.

3.2.3 IPC destinations

Original L4 had threads as the targets of IPC operations.
The motivation was to avoid the cache and TLB pol-
lution associated with a level of indirection, although
Liedtke [1993a] notes that ports could be implemented
with an overhead of 12% (mostly 2 extra TLB misses).
The model required that thread IDs were unique identi-
fiers.

This model has a drawback of poor information hid-
ing. A multi-threaded server has to expose its internal
structure to clients, in order to spread client load, or use
a gateway thread, which could become a bottleneck and
would impose additional communication and synchro-
nisation overhead. There were a number of proposals

to mitigate this but they all had drawbacks. Addition-
ally, large-page support in modern CPUs has reduced the
TLB pollution of indirection by increasing the likelihood
of co-location on the same page. Last but not least, the
global IDs introduced covert channels [Shapiro, 2003].

Influenced by EROS [Shapiro et al., 1999], IPC end-
points were adopted as IPC destinations by seL4 and Fi-
asco.OC [Lackorzynski and Warg, 2009]). seL4 (syn-
chronous) endpoints are essentially ports: the root of the
queue of pending senders or receivers is a now a sep-
arate kernel object, instead of being part of the recip-
ient’s thread control block (TCB). Unlike Mach ports,
IPC endpoints do not provide any buffering.

Replaced: Thread IDs by port-like IPC endpoints
as message destinations.

3.2.4 IPC timeouts

A blocking IPC mechanism creates opportunities for
denial-of-service (DOS) attacks. For example, a mali-
cious (or buggy) client could send a request to a server
without ever attempting to collect the reply; owing to
the rendezvous-style IPC, the sender would block in-
definitely unless it implements a watchdog to abort and
restart. L4’s long IPC enables a slightly more sophisti-
cated attack: A malicious client could send a long mes-
sage to a server, ensure that it would page fault, and pre-
vent its pager from servicing the fault.

To protect against such attacks, IPC operation in the
original L4 had timeouts. Specifically, an IPC syscall
specified 4 timeouts: one to limit blocking until start
of the send phase, one to limit blocking in the receive
phase, and two more to limit blocking on page faults
during the send and receive phases (of long IPC).

Timeout values were encoded in a floating-point for-
mat that supported the values of zero, infinity, and fi-
nite values ranging from one millisecond to weeks. They
added complexity for managing wakeup lists.

Practically, however, timeouts were of little use as a
DOS defence. There is no theory, or even good heuris-
tics, for choosing timeout values in a non-trivial system,
and in reality, only the values zero and infinity were
used: A client sends and receives with infinite timeouts,
while a server waits for a request with an infinite but
replies with a zero timeout. (The client uses an RPC-
style call operation, consisting of a send followed by an
atomic switch to a receive phase, guaranteeing that the
client is ready to receive the server’s reply.) Traditional
watchdog timers represent a better approach to detecting
unresponsive IPC interactions (e.g. resulting from dead-
locks).

Having abandoned long IPC, in L4-embedded we re-
placed timeouts by a single flag supporting a choice

138



of polling (zero timeout) or blocking (infinite timeout).
Only two flags are needed, one for the send and one for
the receive phase. seL4 follows this model. A fully-
asynchronous model, such as that of OKL4, is incom-
patible with timeouts and has no DOS issues that would
require them.

Timeouts could also be used for timed sleeps by wait-
ing on a message from a non-existing thread, a feature
useful in real-time system. Dresden experimented with
extensions, including absolute timeouts, which expire at
a particular wall clock time rather than relative to the
commencement of the system call. Our approach is to
give userland access to a (physical or virtual) timer.

Abandoned: IPC timeouts in seL4, OKL4.

3.2.5 Communication Control

In the original L4, the kernel delivered the sender’s un-
forgeable ID to the receiver. This allows a server to im-
plement a form of discretionary access control, by ig-
noring undesirable messages. However, a server can be
bombarded with spurious large messages by malicious
clients. The time consumed by receiving such mes-
sages (even if copying is done by the kernel) prevents
the server from performing useful work, and checking
which ones to discard also costs time. Hence such mes-
sages can constitute a DOS attack, which can only be
avoided by kernel support that prevents undesirable mes-
sages being sent in the first place [Liedtke et al., 1997b].
Mandatory access control policies also require a mecha-
nism for mediating and authorising communication.

Original L4 provided this through a mechanism called
clans and chiefs: Processes were organised in a hierar-
chy of “clans”, each of which had a designated “chief”.
Inside the clan, all messages are transferred freely and
the kernel guarantees message integrity. But messages
crossing a clan boundary, whether outgoing or incom-
ing, are redirected to the clan’s chief, who can thus con-
trol the flow of messages. The mechanism also supports
confinement [Lipner, 1975] of untrusted subsystems.

Liedtke [1995] argued that the clans-and-chiefs model
only added two cycles per IPC operation, as clan IDs
were encoded in thread IDs for quick comparison. How-
ever, the low overhead only applies where direct com-
munication is possible. Once messages get re-directed,
each such re-direction adds two messages to a (logically)
single round-trip IPC, a significant overhead. Further-
more, the strict thread hierarchy was unwieldy in prac-
tice (and was probably the feature most cursed by people
trying to build L4-based systems). For mandatory access
control, the model quickly deteriorated into a chief per
process. It is a prime example of kernel-enforced policy
(address-space hierarchy) limiting the design space.

As a consequence of these drawbacks, many L4 im-
plementations did not implement clans and chiefs (or
disabled the feature at build time), but that meant that
there was no way to control IPC. There were experi-
ments with models based on a more general form of IPC
redirection [Jaeger et al., 1999], but these failed to gain
traction. The problem was finally resolved with flexible
capability-mediated access control to endpoints.

Abandoned: Clans and chiefs.

3.3 User-level device drivers
A key consequence of the minimality principle, and
maybe the most radical novelty of L4 (or, rather, its pre-
decessor, L3 [Liedtke et al., 1991]) was to make all de-
vice drivers user-level processes.5 This is still a hallmark
of all L4 kernels, and verification is a strong motivator
for sticking with the approach: adding any unverified
code, such as drivers, into the kernel would obliterate
any guarantees, and verifying the large amount of driver
code in real-world systems is out of reach for now.

A small number of drivers are still best kept in the ker-
nel. In a modern L4 kernel this typically means a timer
driver, used for preempting user processes at the end of
their time slice, and a driver for the interrupt controller,
which is required to safely distribute interrupts to user-
level processes.

The user-level driver model is tightly coupled with
modelling interrupts as IPC messages, which the kernel
sends to the driver. Details of the model (IPC from a
virtual thread vs upcall), as well as the association and
acknowledgment protocol, have changed over the years
(and at times changed back and back again) but the gen-
eral approach still applies.

The most notable change was moving from syn-
chronous to asynchronous IPC for interrupt delivery.
This was driven by implementation simplification, as
synchronous delivery required the emulation of virtual
in-kernel threads as the sources of interrupt IPC.

User-level drivers have benefited from virtualisation-
driven hardware improvements. I/O memory manage-
ment units (IOMMUs) have enabled safe pass-through
device access for drivers. User-level drivers have also
benefited from hardware developments that reduce in-
terrupt overheads, specifically interrupt coalescing sup-
port on modern network interfaces. In the x86 world,
they have profited from dramatically decreased context-
switching costs enabled by TLB tagging (among others).

Retained: User-level drivers as a core feature.

5Strictly speaking, this had been done before, in the Michigan Ter-
minal system [Alexander, 1972] and the Monads OS [Keedy, 1979],
but those designs had little direct impact on later ones and there is no
information about performance.

139



Of course, user-level drivers have now become main-
stream. They are supported (if not encouraged) on
Linux, Windows and MacOS. Overheads in those sys-
tems are generally higher than in L4 with its highly op-
timised IPC, but we have shown in the past that low
overheads are achievable even on Linux, at least on
context-switch friendly hardware [Leslie et al., 2005].
In practice, though, only a tiny fraction of devices are
performance-critical.

3.4 Resource management
Original L4’s resource management, like its approach
to communication control, was heavily based on pro-
cess hierarchies. This applied to managing processes
as well as virtual memory. Hierarchies are an effec-
tive way of managing and recovering resources, and pro-
vide a model of constraining sub-systems (where system
mechanisms restrict children’s privileges to be a subset
of their parent’s), but the cost is rigidity. However, the
hierarchies are a form of policy, and as such a bad match
for a microkernel (as discussed in Section 3.2.5).

Capabilities can provide a way out of the constraints
of the hierarchy, which is one of several reasons all
modern L4 kernels adopted capability-based access-
control. Here we examine the most important resource-
management issues arising form the original L4 model,
and how we deal with them now.

3.4.1 Process hierarchy

A process (in L4 this is essentially a page table and
a number of associated threads) consumes kernel re-
sources, and unchecked allocation of TCBs and page ta-
bles could easily lead to denial of service. Original L4
dealt with that through a process hierarchy: “Task IDs”
were essentially capabilities over address spaces, allow-
ing creation and deletion.

There was a finite number of them (of the order
of thousands), which the kernel handed out first-come,
first-served. They could be delegated, but only up or
down the hierarchy. (They were also closely tied to the
thread hierarchy used for IPC control, see Section 3.2.5.)
In a typical setup, the initial user process would grab all
task IDs before creating any further processes.

Perhaps unsurprisingly, this model proved inflexi-
ble and restrictive; it was eventually replaced by fully-
fledged capabilities.

Abandoned: Hierarchical process management.

3.4.2 Recursive page mappings

Original L4 tied authority over physical memory frames
to existing page mappings. Having a valid mapping (of

a frame) in its address space gave a process the right
to map this page into another address space. Instead of
mapping, a process could grant one of its pages, which
removed the page (and any authority over it) from the
grantor. A mapping (but not a grant) could be revoked
by an unmap operation. Address spaces were created
empty, and were populated using the mapping primitive.

The recursive mapping model was anchored in a pri-
mordial address space σ0, which received a (one-on-
one) mapping of all free frames left over after the kernel
booted. σ0 was the page-fault handler of all processes
created at boot time, and would map each of its pages
once to the first process that requested it (by faulting on
an address in the page).

Note that, while the L4 memory model creates a hier-
archy of mappings originating from each frame, it does
not force a hierarchical view of address spaces: Map-
pings were established through IPC (similar to transfer-
ring a capability through an IPC message), and a process
could map one of its pages to any other process it was
allowed to send IPC to (provided the recipient agreed
to receive mappings). Compared to Mach, L4 has no
memory object semantics, only low-level address space
management mechanisms that are closer to Mach’s in-
kernel pmap interface than its user-visible memory ob-
ject abstraction [Rashid et al., 1988]. Memory objects,
copy-on-write, and shadow-chains are all user-level cre-
ated abstractions or implementation approaches.

The recursive mapping model was conceptually sim-
ple and elegant, and Liedtke was clearly proud of it – it
figured prominently in many papers, including the first
[Liedtke, 1993a], and in all his presentations. Yet, expe-
rience showed that there were significant drawbacks.

In order to support revocation at page granularity,
the recursive address-space model requires substantial
bookkeeping in the form of a mapping database. More-
over, the generality of the L4 memory model allows two
colluding processes to force the kernel to consume large
amounts of memory by recursively mapping the same
frame to different pages in each other’s address space,
a potential DOS attack especially on 64-bit hardware,
which can only prevented by controlling IPC (via the
dreaded clans-and-chiefs).

In L4-embedded we removed the recursive mapping
model, after observing that for our real-world use cases,
25–50% of kernel memory use was consumed by the
mapping database even without malicious processes. We
replaced it by a model that more closely mirrors hard-
ware, where mappings always originate from ranges of
physical memory frames.

This approach comes at the expense of losing fine-
grained delegation and revocation of memory (other than
by brute-force scans of page tables), we therefore only
considered it an interim pain relief. OKL4 somewhat

140



extends this minimal model, without achieving the gen-
erality and fine-grained control of the original model.

Mapping control is, of course, easily achieved in a
capability-based system, using a variant of the standard
grant-take model [Lipton and Snyder, 1977]. This is
what seL4 does: the right to map is conveyed by a capa-
bility to a physical frame, not by having access to a vir-
tual page backed by that frame, and thus seL4’s model
is not recursive. Even with a frame capability, mapping
is strictly limited by the explicit kernel memory model
used to bookkeep the mappings, as described below.

Xen provides an interesting point of comparison.
Grant tables allow the creation (based on possession of
a valid mapping) of what is effectively a frame capabil-
ity, which can be passed to another domain to establish
shared mappings [Fraser et al., 2004]. A recent proposal
extends grant tables to allow for revocation of frames
[Ram et al., 2010]. The semantics of the memory map-
ping primitives is loosely similar to that of seL4, minus
the propagation of page faults. In Xen’s case, the over-
head for supporting fine-grained delegation and revoca-
tion is only paid in instances of sharing.

NOVA and Fiasco.OC both retain the recursive ad-
dress space model, with authority to map determined
by possession of a valid mapping. The consequent in-
ability to restrict mapping and thus book keeping allo-
cation is addressed by per-task kernel memory pools in
Fiasco.OC.

The existing L4 address space models (specifically
fine-grained delegation and revocation) represent dif-
ferent trade-offs between generality and minimality
of mechanism, and potentially more space-efficient
domain-specific approaches.

Multiple approaches: Some L4 kernels retain
the model of recursive address-space construc-
tion, while seL4 and OKL4 originate mappings
from frames.

3.4.3 Kernel memory

While capabilities provide a clean and elegant model for
delegation, by themselves they do not solve the prob-
lem of resource management. A single malicious thread
with grant right on a mapping can still use this to cre-
ate a large number of mappings, forcing the kernel to
consume large amounts of memory for meta-data, and
potentially DOS-ing the system.

L4 kernels traditionally had a fixed-size heap from
which the kernel allocated memory for its data struc-
tures. Original L4 had a kernel pager, called σ1, through
which the kernel could request additional memory from
userland. This does not solve the problem of malicious
(or buggy) user code forcing unreasonable memory con-

sumption, it only shifts the problem. Consequently, σ1
was not supported by most L4 kernels.

The fundamental problem, shared by most other
OSes, is the insufficient isolation of user processes
through the shared kernel heap. A satisfactory approach
must be able to provide complete isolation. The under-
lying issue is that, even in a capability system, where
authority is represented by capabilities, it is not possible
to reason about the security state if there are resources
outside the capability system.

Kernels that manage memory as a cache of user-
level content only partially address this problem. While
caching-based approaches remove the opportunity for
DOS attacks based on memory exhaustion, they do not
enable the strict isolation of kernel memory that is a pre-
requisite for performance isolation or real-time systems,
and potentially introduce covert channels.

Liedtke et al. [1997b] examined this issue and pro-
posed per-process kernel heaps together with a mecha-
nism to donate extra memory to the kernel on exhaus-
tion. NOVA, Fiasco and OKL4 all adopted variations
of this approach. Per-process kernel heaps simplify user
level (by removing control of allocation) at the expense
of the ability to revoke allocations without destroying
the process, and the ability to reason directly about al-
located memory (as opposed to just bounding it). The
trade-off is still being explored in the community.

We took a substantially different approach with seL4;
its model for managing kernel memory is seL4’s main
contribution to OS design. Motivated by the desire to
reason about resource usage and isolation, we subject
all kernel memory to authority conveyed by capabili-
ties (except for the fixed amount used by the kernel to
boot up, including its strictly bounded stack). Specifi-
cally, we completely remove the kernel heap, and pro-
vide userland with a mechanism to identify authorised
kernel memory whenever the kernel allocates data struc-
tures. A side-effect is that this reduces the size and com-
plexity of the kernel, a major bonus to verification.

The key is making all kernel objects explicit and
subject to capability-based access control. This ap-
proach is inspired by hardware-based capability sys-
tems, specifically CAP [Needham and Walker, 1977]
where hardware-interpreted capabilities directly refer to
memory. HiStar [Zeldovich et al., 2011] also makes
all kernel objects explicit, though it takes a caching ap-
proach to memory management.

Of course, user-visible kernel objects do not mean that
someone with authority over a kernel object can directly
read or write it. The capability provides the right to
invoke (a subset of) object-specific methods, which in-
cludes destruction of the object. (Objects, once created,
never change their size.) Crucially, the kernel object
types include unused memory, called Untyped in seL4,

141



Object Description
TCB Thread control block
Cnode Capability storage
Synchronous
Endpoint

Port-like rendezvous object for syn-
chronous IPC

Asynchronous
Endpoint

Port-like object for asynchronous
notification.

Page
Directory

Top-level page table for ARM and
IA-32 virtual memory

Page Table Leaf page table for ARM and IA-32
virtual memory

Frame 4 KiB, 64 KiB, 1 MiB and 16 MiB
objects that can be mapped by page
tables to form virtual memory

Untyped
Memory

Power-of-2 region of physical
memory from which other kernel
objects can be allocated

Table 3: seL4 kernel objects.

which can be used to create other objects.
Specifically, the only operation possible on Untyped

is to retype part of it into some object type. The relation-
ship of the new object to the original Untyped is recorded
in a capability derivation tree, which also records other
kinds of capability derivation, such as the creation of
capability copies (with potentially reduced privileges).
Once some Untyped has been retyped, the only opera-
tion possible on the (corresponding part of) the original
Untyped is to revoke the derived object (see below).

Retyping is the only way to create objects in seL4.
Hence, by limiting access to Untyped memory, a system
can control resource allocation. Retyping can also pro-
duce smaller Untyped objects, which can then be inde-
pendently managed – this is key to delegating resource
management. The derivation from Untyped also ensures
the kernel integrity property that no two typed objects
overlap.

Table 3 gives the complete set of seL4 object types
and their use. Userland can only directly access
(load/store/fetch) memory corresponding to a Frame that
is mapped in its address space (by inserting the Frame
capability into a Page Table).

The resulting model has the following properties:

1. All authority is explicitly conferred (via capabili-
ties).

2. Data access and authority can be confined.

3. The kernel itself (for its own data structures) ad-
heres to the authority distributed to applications, in-
cluding the consumption of physical memory.

4. Each kernel object can be reclaimed independently
of any other kernel objects.

5. All operations execute, or are preemptible, in
“short” time (constant or linear in the size of an ob-
ject no bigger than a page).

Properties 1–3 ensure that it is possible to reason
about system resources as well as security. Especially
Property 3 was crucial to formally proving the ker-
nel’s ability to ensure integrity, authority confinement
and confidentiality [Murray et al., 2013; Sewell et al.,
2011]. Property 5 ensures that all kernel latencies are
bounded and thus supports its use for hard real-time sys-
tems [Blackham et al., 2011].

Property 4 ensures kernel integrity. Any holder of an
appropriate capability can reclaim an object at any time
(making the original Untyped again available for object
creation). For example, page-table memory can be re-
claimed without having to destroy the corresponding ad-
dress space. This requires that the kernel is able to detect
(and invalidate) any references to an object that is being
reclaimed.

The requirement is satisfied with the help of the capa-
bility derivation tree. Objects are revoked by invoking
the revoke() method on a Untyped object further up
the tree; this will remove all capabilities to all objects
derived from that Untyped. When the last capability to
an object is removed, the object itself is deleted. This
removes any in-kernel dependencies it may have with
other objects, thus making it available for re-use. Re-
moval of the last capability is easy to detect, as it cleans
up the last leaf node in the capability tree referring to a
particular memory location.

Revocation requires user-level book-keeping to asso-
ciate Untyped capabilities with objects, often at the gran-
ularity of higher-level abstractions (such as processes)
defined at user level. The precise semantics of Untyped
and its relationship to user-level book-keeping is still be-
ing explored.

Added: User-level control over kernel memory
in seL4, kernel memory quota in Fiasco.OC.

3.4.4 Time

Apart from memory, the other key resource that must be
shared in a system is the CPU. Unlike memory, which
can be sub-divided and effectively shared between mul-
tiple processes concurrently, the CPU can only be used
by a single thread at a time, and must therefore be time-
multiplexed.

All versions of L4 have achieved this multiplex-
ing through a fixed-policy scheduler (pluggable in Fi-
asco.OC). The scheduling model of the original L4,

142



hard-priority round-robin, is still alive, despite being a
gross heresy against the core microkernel religion of
policy-freedom. All past attempts to export scheduling
policy to user level have failed, generally due to intoler-
able overheads, or were incomplete or domain-specific.

Especially the Dresden group, which has a focus on
real-time issues, experimented extensively with time is-
sues, including absolute timeouts (see Section 3.2.4).
They also explored several approaches to scheduling, as
well as system structures suitable for real-time and anal-
ysed L4-based real time systems [Härtig and Roitzsch,
2006].

While able to address some specific problems, Dres-
den did not develop a policy-free and universal mech-
anism, and Fiasco.OC reverted to essentially the tradi-
tional L4 model. A more recent proposal for scheduling
contexts allows mapping of hierarchical priority-based
schedules onto a single priority scheduler [Lackorzyn-
ski et al., 2012]. While promising, this is not yet able
to deal with the breadth of scheduling approaches used
in the real-time community, especially earliest-deadline-
first (EDF) scheduling.

One might argue that the notion of a single, general-
purpose kernel suitable for all purposes may not be as
relevant as it once was – these days we are used to
environment-specific plugins. However, the formal veri-
fication of seL4 creates a powerful disincentive to chang-
ing the kernel, it strongly reinforces the desire to have a
single platform for all usage scenarios. Hence, a policy-
free approach to dealing with time is as desirable as it
has ever been.

Unresolved: Principled, policy-free control of
CPU time.

3.4.5 Multicore

Multiprocessor issues have been explored early-on in
the L4 community. Most of the work, L4/Alpha
and L4/MIPS notwithstanding, was done on x86 plat-
forms, which were the earliest affordable multiproces-
sors. Early x86 multiprocessors and multicores had high
inter-core communication cost and no shared caches.
Consequently, the standard approach was to use per-
processor scheduling queues (and minimal sharing of
kernel data across cores), and thread migration only hap-
pening on explicit request by userland. Uhlig [2005]
explored locking, synchronisation and consistency is-
sues on platforms with many cores, and developed
approaches for scalable concurrency control of kernel
data structures based on RCU [McKenney et al., 2002].
NOVA and Fiasco.OC make extensive use of RCU.

With the shift of emphasis from high-end server to
embedded and real-time platforms, multiprocessor is-
sues took a back stage, and were only revived recently

with the advent of multicore versions of embedded pro-
cessors. These are characterised by low inter-core com-
munication cost and usually shared L2 caches, implying
tradeoffs which differ from those on x86. The result-
ing low migration costs do typically not justify the over-
head of a system call for migrating threads, and a global
scheduler makes more sense.

Here, verification introduces new constraints. As dis-
cussed in Section 3.2.2, concurrency presents huge chal-
lenges for verification, and we kept it out of the kernel
as much as possible. For multicores this means adopt-
ing either a big kernel lock or a multikernel approach
[Baumann et al., 2009]. For a microkernel, where sys-
tem calls are short, the former is not as silly as it may
seem at first, as lock contention will be low, at least for
a small number of cores sharing an L2.

The approach we are exploring at present is a clus-
tered multikernel, a hybrid of a big-lock kernel (across
cores which share an L2 cache), and a restricted vari-
ant of a multikernel (no memory migration is permit-
ted between kernels) [von Tessin, 2012]. The clustered
multikernel avoids concurrency in the majority of kernel
code, which enables some of the formal guarantees to
continue hold under some assumptions. The most sig-
nificant assumptions are that (1) the lock itself, and any
code outside of it, is correct and race free, and that (2)
the kernel is robust to any concurrent changes to mem-
ory shared between the kernel and user-level (for seL4 is
this is only a block of virtual IPC message registers).

The attraction of this approach is that it retains the
existing uniprocessor proof with only small modifica-
tions. We have formally lifted a parallel composition of
the uniprocessor automatons and shown that refinement
still holds. The disadvantage is that the formal guaran-
tees no longer cover the entire kernel, and the large-step
semantics used by the lifting framework preclude fur-
ther extension of the formal framework to cover reason-
ing about the correctness of the lock, user-kernel concur-
rency, and any relaxation of resource migration restric-
tions.

A variation of a clustered multikernel may eventually
be the best approach to obtaining full formal verification
of a multiprocessor kernel, though we make no strong
representations here. Much more work is required on
the formal side to reason about fine-grained interleaving
at the scale of a microkernel.

Unresolved: Handling of multicore processors in
the age of verification.

4 Microkernel Implementation
Liedtke [1993a] list a set of design decisions and imple-
mentation tricks which helped making IPC fast in the

143



original i486 version, although a number of them smell
of premature optimisation.

Some have already been mentioned, such as the tem-
porary mapping window used in the (now obsolete) long
IPC. Others are uncontroversial, such as the send-receive
combinations in a single system call (the client-style
call for an RPC-like invocation and the server-style
reply-and-wait). We will discuss the remaining in
more detail, including some traditional L4 implemen-
tation approaches which were less-publicised but long
taken for granted in the community.

4.1 Strict process orientation and virtual
TCB array

The original L4 had a separate kernel stack for each
thread, allocated above its TCB on the same page. The
TCB’s base address was therefore a fixed offset from the
stack base, and could be obtained by masking the least
significant bits off the kernel stack pointer. Only a sin-
gle TLB entry was required to cover both a thread’s TCB
and stack.

Furthermore, all TCBs were allocated in a sparse,
virtually-addressed array, indexed by thread ID. During
IPC, this enables a very fast lookup of the destination
TCB, without first checking the validity of the ID: If the
caller supplies an invalid ID, the lookup may access an
unmapped TCB, triggering a page fault, which the ker-
nel handles by aborting the IPC. If no fault happened,
the validity of the thread ID can be established by com-
paring the caller-supplied value with the one found in
the TCB. (Original L4’s thread IDs had version num-
bers, which changed when the thread was destroyed and
re-created. This was done to make thread IDs unique
in time. Recording the current ID in the TCB allowed
detecting stale thread IDs.)

Both features come at a cost: The many kernel stacks
dominate the per-thread memory overhead, and they
also increase the kernel’s cache footprint. The virtual
TCB array increases the kernel’s virtual memory use
and thus the TLB footprint, but avoids the additional
cache footprint for the lookup table that would other-
wise be required. Processors with a single page size
and untagged TLBs left little opportunity to optimise be-
yond grouping data structures to minimise the number
of pages touched. However, RISC processors had large-
page sizes (or physical memory addressing) and tagged
TLBs which changed the trade-offs.

The kernel’s memory use became a significant issue
when L4 was gaining traction in the embedded space, so
the design needed revisiting.

Initial experiments with a single-stack kernel on a
Pentium showed a reduction in kernel memory con-
sumption, and improvements in IPC performance on

micro-benchmarks [Haeberlen, 2003]. Warton [2005]
performed a thorough performance evaluation of the Pis-
tachio process kernel vs an event-based (single-stack)
kernel with continuations on an ARMv5 processor.
He demonstrated comparable performance (generally
within 1%) on micro-benchmarks, but a 20% perfor-
mance advantage of the event kernel on a multi-tasking
workload (AIM7). He also found that the event kernel’s
per-thread memory use was a quarter of that of the pro-
cess kernel, despite the event kernel requiring more than
twice the TCB size of the process kernel (to store the
continuations).

Concurrently, Nourai [2005] analysed the trade-offs
of virtual vs physical addressing of TCBs. He im-
plemented physical addressing, also in Pistachio, al-
though on a MIPS64 processor. He found little if any
differences in IPC performance in micro-benchmarks,
but significantly better performance of the physically-
addressed kernel on workloads that stressed the TLB.
MIPS is somewhat anomalous in that it supports phys-
ical addressing even with the MMU enabled, while on
most other architectures “physical” addressing is sim-
ulated by idempotent large-page mappings, potentially
in conjunction with “global” mappings. Still Nourai’s
results convincingly indicate that there is no significant
performance benefit from the virtually-addressed TCBs.

An event-based kernel that avoids in-kernel page-fault
exceptions preserves the semantics of the C language.
As discussed earlier in Section 3.2.2, remaining within
the semantics of C reduces the complexity of verifica-
tion.

Together, these results made us choose an event-based
design with physically-addressed kernel data for L4-
embedded, and seL4 followed suit. While this decision
was driven initially by the realities of resource-starved
embedded systems and later the needs of verification,
the approach’s benefits are not restricted to those con-
texts, and we believe it is generally the best approach on
modern hardware.

Replaced: Process kernel by event kernel in
seL4, OKL4 and NOVA.

Abandoned: Virtual TCB addressing.

4.2 Lazy scheduling
In the rendezvous model of IPC, a thread’s state fre-
quently alternates between runnable and blocked. This
implies frequent queue manipulations, moving a thread
into and out of the ready queue, often many times within
a time slice.

Liedtke’s lazy scheduling trick minimises these queue
manipulations: When a thread blocks on an IPC oper-
ation, the kernel updates its state in the TCB but leaves

144



the thread in the ready queue, with the expectation it will
unblock soon. When the scheduler is invoked upon a
time-slice preemption, it traverses the ready queue until
it finds a thread that is really runnable, and removes the
ones that are not. The approach was complemented by
lazy updates of wakeup queues.

Lazy scheduling moves work from a high-frequency
operation to the less frequently invoked scheduler. We
observed the drawback when analysing seL4’s worst-
case execution time (WCET) for enabling its use in hard
real-time systems [Blackham et al., 2012]: The execu-
tion time of the scheduler is only bounded by the number
of threads in the system!

To address the issue, we adopted an alternative opti-
misation, referred to as Benno scheduling, which does
not suffer from pathological timing behaviour: Here,
the ready queue contains all runnable threads except the
currently executing one. Hence, the ready queue usu-
ally does not get modified when threads block or un-
block during IPC. At preemption time, the kernel inserts
the (still runnable but no longer executing) preempted
thread into the ready queue. The removal of timeouts
means that there are no more wakeup queues to manipu-
late. Endpoint wait queues must be strictly maintained,
but in the common case (of a server responding to client
requests received via a single endpoint) they are hot in
cache, so the cost of those queue manipulations is low.
This approach has similar average-case performance as
lazy scheduling, while also having a bounded WCET.

Replaced: Lazy scheduling by Benno schedul-
ing.

4.3 Direct process switch
L4 traditionally tries to avoid running the scheduler dur-
ing IPC. If a thread gets blocked during an IPC call, the
kernel switches to a readily-identifiable runnable thread,
which then executes on the original thread’s time slice,
generally ignoring priorities. This approach is called di-
rect process switch.

It makes more sense than one might think at first, es-
pecially when assuming that servers have at least the
same priority as clients. On the one hand, if a (client)
thread performs a call operation (to a server), the caller
will obviously block until the callee replies. Having
been able to execute the syscall, the thread must be the
highest-priority runnable thread, and the best way to ob-
serve its priority is to ensure that the callee completes
as quickly as possible (and the callee is likely of higher
priority anyway).

On the other hand, if a server replies (using
reply-and-wait) to a waiting client, and the server
has a request waiting from another client, it makes sense

to continue the server to take advantage of the primed
cache by executing the receive phase of its IPC.

Modern L4 versions, concerned about correct real-
time behaviour, retain direct-process switch where it
conforms with priorities, and else invoke the scheduler.
In fact, direct-process switch is a form of time-slice
donation, and Steinberg et al. [2005] showed that can
be used to implement priority-inheritance and priority-
ceiling protocols. Fiasco.OC and NOVA support this by
allowing the user to specify donation on a per-call basis.

Replaced: Direct process switch subject to pri-
orities in seL4 and optional in Fiasco.OC and
NOVA.

4.4 Preemption
Traditionally L4 implementations had interrupts dis-
abled while executing within the kernel, although some
(like L4/MIPS) contained preemption points in long-
running operations, where interrupts were briefly en-
abled. Such an approach significantly simplifies kernel
implementation, as most of the kernel requires no con-
currency control, and generally leads to better average-
case performance.

However, the original L4 ABI had a number of long-
running system calls, and early Fiasco work made the
kernel fully preemptive in order to improve real-time
performance [Hohmuth and Härtig, 2001]. Later ABI
versions removed most of the long-running operations,
and Fiasco.OC reverted to the original, mostly non-
preemptible approach.

In the case of seL4, there is an additional reason for a
non-preemptible kernel: avoiding concurrency to make
formal verification tractable [Klein et al., 2009]. Given
seL4’s focus on safety-critical systems, many of which
are of a hard real-time nature, we need hard bounds on
the latency of interrupt delivery. It is therefore essen-
tial to avoid long-running kernel operations, and use pre-
emption points where this is not possible (e.g. the prac-
tically unbounded object deletion). We put significant
effort into placement of preemption points, as well as on
data structures and algorithms that minimises the need
for them [Blackham et al., 2012].

Note that a continuation-based event kernel provides
natural support for preemption points (by making them
continuation points).

Retained: Mostly non-preemptible design with
strategic preemption points.

4.5 Non-portability
Liedtke [1995] makes the point that a microkernel
implementation should not strive for portability, as a

145



hardware abstraction introduces overheads and hides
hardware-specific optimisation opportunities. He cites
subtle architectural changes between the “compatible”
i486 and Pentium processors resulting in shifting trade-
offs and implying significant changes in the optimal im-
plementation.

This argument was debunked by Liedtke himself, with
the high-performance yet portable Hazelnut kernel and
especially Pistachio. Careful design and implementation
made it possible to develop an implementation that was
80–90% architecture-agnostic.

In seL4, the architecture-agnostic code (between x86
and ARM) only accounts for about 50%. About half the
code deals with virtual memory management which is
necessarily architecture-specific. The lower fraction of
portable code is a result of seL4’s overall smaller size,
with most (architecture-agnostic) resource-management
code moved to userland. There is little architecture-
specific optimisation except for the IPC fastpath. Stein-
berg [2013] similarly estimates a 50% rewrite for porting
NOVA to ARM.

Replaced: Non-portable implementation by sig-
nificant portion of architecture-agnostic code.

4.6 Non-standard calling convention

The original L4 kernel was completely implemented in
assembler, and therefore the calling convention for func-
tions was irrelevant inside the kernel. At the ABI, all
registers which were not needed as syscall parameters
were designated as message registers. The library in-
terface provided inlined assembler stubs to convert the
compiler’s calling convention to the kernel ABI (in the
hope the compiler would optimise away any conversion
overhead).

The next generation of L4 kernels, starting with
L4/MIPS, were all written at least partially in C. At
the point of entering C code, these kernels had to re-
establish the C compiler’s calling convention, and revert
to the kernel’s convention on return. This made calling
C functions relatively expensive, and therefore discour-
aged the use of C except for inherently expensive opera-
tions.

Later kernels where written almost exclusively in C
(Hazelnut) or C++ (Fiasco, Pistachio). The cost of the
calling-convention mismatch (and the lack of Liedtke-
style masochism required for micro-optimising every bit
of code) meant that the C code did not exhibit perfor-
mance that was competitive to the old assembler kernel.
The implementors of those kernels therefore started to
introduce hand-crafted assembler fast paths. These led
to IPC performance comparable to the original L4 (see
Table 1).

The traditional approach was unsuitable for seL4, as
the verification framework could only deal with C code
[Klein et al., 2009], and we wanted to verify the kernel’s
functionality as completely as feasible. This requires re-
stricting assembler code to the bare minimum, and rules
out calling-convention conversions, forcing us to adopt
the tool chain’s standard calling conventions.

Abandoned: Non-standard calling conventions.

4.7 Implementation language
seL4 is also highly dependent on fast-path code to obtain
competitive IPC performance, but the fast paths must
now be implemented in C. The assembler fast path had
already been abandoned in the commercial OKL4 ker-
nel because of the high maintenance cost of assembler
code, which in the commercial environment outweighed
any performance degradation. For seL4 we were willing
to tolerate no more than a 10% degradation in IPC per-
formance, compared to the fastest kernels on the same
architecture.

Fortunately, it turned out that by carefully hand-
crafting the fast path, we can achieve highly-competitive
IPC latencies [Blackham and Heiser, 2012]. Specifically
this means manually re-ordering statements, making use
of (verified) invariants that the compiler is unable to de-
termine by static analysis,

In fact, the finally achieved latency of 188 cycles for a
one-way IPC on an ARM11 processor is about 10% bet-
ter than the fastest IPC we had measured on any other
kernel on the same hardware! This is partially a result of
the simplified seL4 ABI and IPC semantics, and the fact
that the event-based kernel no longer requires saving and
restoring the C calling convention on a stack switch. We
also benefit from improved compilers, especially their
support for annotating condition branches for the com-
mon case, which helps code locality.

In any case, this result demonstrates that assembler
implementations are no longer justified by performance
arguments. The Dresden team in fact found that they
could achieve highly-competitive performance without
any fastpathing.

Abandoned: Assembler code for performance.

The first L4 kernel written completely in a high-level
language was Fiasco, which chose C++ rather than C
(which had be used for parts of the MIPS kernel a few
years earlier). Given the state of C++ compilers at the
time, this may seem a courageous decision, but is at least
partially explained by the fact that Fiasco was not ini-
tially designed with performance in mind. This changed
later, and the recent Fiasco experience demonstrates that,

146



when used correctly, there is no performance penalty
from C++ code.

The Karlsruhe team also chose C++ for Pistachio,
mostly to support portability. Despite a high degree of
enthusiasm about C++ in Dresden and Karlsruhe, we
never saw any convincing advantages offered by C++
for microkernel implementation. Furthermore, OK Labs
found that the availability of good C++ compilers was a
real problem in the embedded space, and they converted
their version of the microkernel back to straight C.

For seL4, the requirements of verifications forced the
choice of C. While Dresden’s VFiasco project attempted
to verify the C++ kernel [Hohmuth and Tews, 2005], it
never completed formalising the semantics of the C++
subset used by Fiasco. In contrast, by using C to imple-
ment seL4, we could build on an existing formalisation
of C [Norrish, 1998], a key enabler for the verification.

Abandoned: C++ for seL4 and OKL4.

5 Conclusions
It is rare that a research operating system has both a sig-
nificant developer community, significant commercial
deployment, as well as a long period of evolution. L4 is
such a system, with 20 years of evolution of the API, of
design and implementation principles, and about a dozen
from-scratch implementations. We see this as a great op-
portunity to reflect on the principles and know-how that
has stood the test of time, and what has failed to sur-
vive increased insights, changed deployment scenarios
and the evolution of CPU architectures.

Design choices and implementation tricks came and
went (including some which were close to the original
designer’s heart). However, the most general principles
behind L4, minimality (including running device drivers
at user level) and a strong focus on performance, still
remain relevant and foremost in the minds of develop-
ers. Specifically we find that the key microkernel per-
formance metric, IPC latency, has remained essentially
unchanged (in terms of clock cycles), as far as com-
parisons across vastly different ISAs and micro archi-
tectures have any validity, in stark contrast to the trend
identified by Ousterhout [1990] just a few years before
L4 was created. Furthermore, and maybe most surpris-
ingly, the code size has essentially remained constant, a
rather unusual development in software systems.

Formal verification increased the importance of min-
imality, and also increased pressure for simplification
of the implementation. Several design decisions, such
as the simplified message structure, user-level control
of kernel memory and the approach to multicores are
strongly influenced by verification. It also impacted a
number of implementation approaches, such as the use

of an event-oriented kernel, adoption of standard calling
convention, and the choice of C as the implementation
language. However, we do not think that this has led to
tradeoffs which we would consider inferior when ignor-
ing verification.

With formal verification, L4 has convincingly deliv-
ered on one of the core promises microkernels made
many years ago: robustness. We think it is a great tes-
tament to the brilliance of Liedtke’s original L4 design
that this was achieved while, or maybe due to, staying
true to the original L4 philosophy. It may have taken an
awfully long time, but time has finally proved right the
once radical ideas of Brinch Hansen [1970].

There is one concept that has, so far, resisted any sat-
isfactory abstraction: time. L4 kernels still implement a
specific scheduling policy – in most cases priority-based
round-robin – the last major holdout of policy in the ker-
nel. This probably represents the largest limitation of
generality of L4 kernels. There is work underway at
Dresden and NICTA that indicates that a single, parame-
terised kernel scheduler may actually be able to support
all standard scheduling policies, and we expect it will
not take another 20 years to get there.

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence
program.

L4 would not exist without its inventor, Jochen
Liedtke, and we pay tribute to his brilliance. We are also
greatly indebted to the many people who contributed to
L4 over two decades, generations of staff and students at
IBM Watson, TU Dresden, University of Karlsruhe, the
University of New South Wales and NICTA; there are
too many to name them all.

We are specifically grateful to members of the L4
community who provided feedback on drafts of this pa-
per: Andrew Baumann, Ben Leslie, Chuck Gray, Her-
mann Härtig. We thank Adam Lackorzynski for dig-
ging out the original L4 sources and extracting SLOC-
counts, and Adrian Danis for some last-minute seL4 op-
timisations and measurements. We thank the anonymous
SOSP reviewers for their insightful comments, and our
shepherd John Ousterhout for his feedback.

References
Michael T. Alexander. Organization and features of the

Michigan terminal system. In AFIPS Conference Pro-

147



ceedings, 1972 Spring Joint Computer Conference,
pages 585–591, 1972.

Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Tim-
othy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the
22nd ACM Symposium on Operating Systems Princi-
ples, Big Sky, MT, USA, October 2009. ACM.

Bernard Blackham and Gernot Heiser. Correct, fast,
maintainable – choose any three! In Proceedings
of the 3rd Asia-Pacific Workshop on Systems (AP-
Sys), pages 13:1–13:7, Seoul, Korea, July 2012. doi:
10.1145/2349896.2349909.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay,
Abhik Roychoudhury, and Gernot Heiser. Timing
analysis of a protected operating system kernel. In
Proceedings of the 32nd IEEE Real-Time Systems
Symposium, pages 339–348, Vienna, Austria, Novem-
ber 2011. doi: 10.1109/RTSS.2011.38.

Bernard Blackham, Yao Shi, and Gernot Heiser. Im-
proving interrupt response time in a verifiable pro-
tected microkernel. In Proceedings of the 7th EuroSys
Conference, pages 323–336, Bern, Switzerland, April
2012. doi: 10.1145/2168836.2168869.

Per Brinch Hansen. The nucleus of a multiprogramming
operating system. Communications of the ACM, 13:
238–250, 1970.

J. Bradley Chen and Brian N. Bershad. The impact of
operating system structure on memory system per-
formance. In Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, pages 120–
133, Asheville, NC, USA, December 1993.

Michael Condict, Don Bolinger, Dave Mitchell, and Ea-
monn McManus. Microkernel modularity with inte-
grated kernel performance. Technical report, OSF Re-
search Institute, June 1994.

Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations. Com-
munications of the ACM, 9:143–155, 1966.

Dhammika Elkaduwe, Philip Derrin, and Kevin Elphin-
stone. Kernel design for isolation and assurance of
physical memory. In 1st Workshop on Isolation and
Integration in Embedded Systems, pages 35–40, Glas-
gow, UK, April 2008. ACM SIGOPS. doi: 10.1145/
1435458.

Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt,
Andrew Warfield, and Mark Williamson. Safe hard-
ware access with the Xen virtual machine monitor. In
Proceedings of the 1st Workshop on Operating Sys-
tem and Architectural Support for the On-Demand IT
Infrastructure (OASIS), 2004.

Charles Gray, Matthew Chapman, Peter Chubb, David
Mosberger-Tang, and Gernot Heiser. Itanium — a
system implementor’s tale. In Proceedings of the
2005 USENIX Annual Technical Conference, pages
264–278, Anaheim, CA, USA, April 2005.

Andreas Haeberlen. Managing kernel memory resources
from user level. Diploma thesis, Dept of Computer
Science, University of Karlsruhe, April 2003. URL
http://os.ibds.kit.edu/english/97 639.php.

Hermann Härtig and Michael Roitzsch. Ten years of
research on L4-based real-time systems. In Proceed-
ings of the 8th Real-Time Linux Workshop, Lanzhou,
China, 2006.

Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, and Jean Wolter. The perfor-
mance of µ-kernel-based systems. In Proceedings of
the 16th ACM Symposium on Operating Systems Prin-
ciples, pages 66–77, St. Malo, France, October 1997.

Gernot Heiser and Ben Leslie. The OKL4 Microvisor:
Convergence point of microkernels and hypervisors.
In Proceedings of the 1st Asia-Pacific Workshop on
Systems (APSys), pages 19–24, New Delhi, India, Au-
gust 2010.

Michael Hohmuth and Hermann Härtig. Pragmatic non-
blocking synchronization for real-time systems. In
Proceedings of the 2001 USENIX Annual Technical
Conference, Boston, MA, USA, 2001.

Michael Hohmuth and Hendrik Tews. The VFiasco ap-
proach for a verified operating system. In Proceedings
of the 2nd Workshop on Programming Languages and
Operating Systems (PLOS), Glasgow, UK, July 2005.

Trent Jaeger, Kevin Elphinstone, Jochen Liedtke,
Vsevolod Panteleenko, and Yoonho Park. Flexible ac-
cess control using IPC redirection. In Proceedings of
the 7th Workshop on Hot Topics in Operating Systems,
Rio Rico, AZ, USA, March 1999.

J. Leslie Keedy. On the programming of device drivers
for in-process systems. Monads Report 5, Dept. of
Computer Science, Monash University, Clayton VIC,
Australia, 1979.

148

http://os.ibds.kit.edu/english/97_639.php


Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal verification of an OS ker-
nel. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles, pages 207–220, Big
Sky, MT, USA, October 2009. ACM. doi: 10.1145/
1629575.1629596.

Adam Lackorzynski and Alexander Warg. Taming sub-
systems: capabilities as universal resource access
control in L4. In 2nd Workshop on Isolation and Inte-
gration in Embedded Systems, pages 25–30, Nurem-
burg, Germany, March 2009.

Adam Lackorzynski, Alexander Warg, Marcus Völp,
and Hermann Härtig. Flattening hierarchical schedul-
ing. In International Conference on Embedded Soft-
ware, pages 93–102, Tampere, Finland, October
2012.

Ben Leslie, Peter Chubb, Nicholas FitzRoy-Dale, Stefan
Götz, Charles Gray, Luke Macpherson, Daniel Potts,
Yueting (Rita) Shen, Kevin Elphinstone, and Gernot
Heiser. User-level device drivers: Achieved perfor-
mance. Journal of Computer Science and Technology,
20(5):654–664, September 2005.

Roy Levin, Ellis S. Cohen, William M. Corwin, Fred J.
Pollack, and William A. Wulf. Policy/mechanism sep-
aration in HYDRA. In Proceedings of the 5th ACM
Symposium on Operating Systems Principles, pages
132–140, 1975.

Jochen Liedtke. Improving IPC by kernel design. In
Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 175–188, Asheville,
NC, USA, December 1993a.

Jochen Liedtke. A persistent system in real use: Ex-
perience of the first 13 years. In Proceedings of the
3rd IEEE International Workshop on Object Orien-
tation in Operating Systems (IWOOOS), pages 2–11,
Asheville, NC, USA, December 1993b. IEEE.

Jochen Liedtke. On µ-kernel construction. In Proceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 237–250, Copper Mountain,
CO, USA, December 1995.

Jochen Liedtke. Towards real microkernels. Communi-
cations of the ACM, 39(9):70–77, September 1996.

Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two
years of experience with a µ-kernel based OS. ACM
Operating Systems Review, 25(2):51–62, April 1991.

Jochen Liedtke, Kevin Elphinstone, Sebastian
Schönberg, Herrman Härtig, Gernot Heiser, Nayeem
Islam, and Trent Jaeger. Achieved IPC performance
(still the foundation for extensibility). In Proceedings
of the 6th Workshop on Hot Topics in Operating
Systems, pages 28–31, Cape Cod, MA, USA, May
1997a.

Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Pre-
venting denial-of-service attacks on a µ-kernel for
WebOSes. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems, pages 73–79, Cape
Cod, MA, USA, May 1997b. IEEE.

Steven. B. Lipner. A comment on the confinement prob-
lem. In Proceedings of the 5th ACM Symposium on
Operating Systems Principles, pages 192–196. ACM,
1975.

Richard J. Lipton and Lawrence Snyder. A linear time
algorithm for deciding subject security. Journal of the
ACM, 24(3):455–464, 1977. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/322017.322025.

Paul E. McKenney, Dipankar Sarma, Andrea Arcangelli,
Andi Kleen, Orran Krieger, and Rusty Russell. Read
copy update. In Proceedings of the Ottawa Linux
Symposium, 2002. URL http://www.rdrop.com/users/
paulmck/rclock/rcu.2002.07.08.pdf.

Toby Murray, Daniel Matichuk, Matthew Brassil, Pe-
ter Gammie, Timothy Bourke, Sean Seefried, Corey
Lewis, Xin Gao, and Gerwin Klein. seL4: from gen-
eral purpose to a proof of information flow enforce-
ment. In IEEE Symposium on Security and Privacy,
pages 415–429, San Francisco, CA, May 2013. ISBN
10.1109/SP.2013.35.

Roger M. Needham and R.D.H. Walker. The Cambridge
CAP computer and its protection system. In Proceed-
ings of the 6th ACM Symposium on Operating Systems
Principles, pages 1–10. ACM, November 1977.

Michael Norrish. C formalised in HOL. PhD thesis,
University of Cambridge Computer Laboratory, 1998.

Abi Nourai. A physically-addressed L4 kernel. BE
thesis, School of Computer Science and Engineering,
University of NSW, Sydney 2052, Australia, March
2005. Available from publications page at http://ssrg.
nicta.com.au/.

John K. Ousterhout. Why aren’t operating systems get-
ting faster as fast as hardware? In Proceedings of the
1990 Summer USENIX Technical Conference, pages
247–56, June 1990.

149

http://www.rdrop.com/users/paulmck/rclock/ rcu.2002.07.08.pdf
http://www.rdrop.com/users/paulmck/rclock/ rcu.2002.07.08.pdf
http://ssrg.nicta.com.au/
http://ssrg.nicta.com.au/


Kaushik Kumar Ram, Jose Renato Santos, and Yoshio
Turner. Redesigning Xen’s memory sharing mecha-
nism for safe and efficient I/O virtualization. In Pro-
ceedings of the 2nd Workshop on I/O Virtualization,
Pittsburgh, PA, USA, 2010. USENIX.

Richard Rashid, Avadis Tevanian, Jr., Michael Young,
David Golub, Robert Baron, David Black, William J.
Bolosky, and Jonathan Chew. Machine-independent
virtual memory management for paged uniprocessor
and multiprocessor architectures. IEEE Transactions
on Computers, C-37:896–908, 1988.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby
Murray, June Andronick, and Gerwin Klein. seL4 en-
forces integrity. In Marko C. J. D. van Eekelen, Her-
man Geuvers, Julien Schmaltz, and Freek Wiedijk,
editors, 2nd International Conference on Interactive
Theorem Proving, volume 6898 of Lecture Notes in
Computer Science, pages 325–340, Nijmegen, The
Netherlands, August 2011. Springer. doi: http://dx.
doi.org/10.1007/978-3-642-22863-6 24.

Jonathan S. Shapiro. Vulnerabilities in synchronous
IPC designs. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, USA, May 2003. URL citeseer.ist.psu.edu/
shapiro03vulnerabilities.html.

Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: A fast capability system. In Pro-
ceedings of the 17th ACM Symposium on Operating
Systems Principles, pages 170–185, Charleston, SC,
USA, December 1999. URL http://www.eros-os.org/
papers/sosp99-eros-preprint.ps.

Udo Steinberg. Personal communication, 2013.

Udo Steinberg and Bernhard Kauer. NOVA: A
microhypervisor-based secure virtualization architec-
ture. In Proceedings of the 5th EuroSys Conference,
Paris, France, April 2010.

Udo Steinberg, Jean Wolter, and Hermann Härtig. Fast
component interaction for real-time systems. In Eu-
romicro Conference on Real-Time Systems, pages 89–
97, Palma de Mallorca, Spain, July 2005.

Volkmar Uhlig. Scalability of Microkernel-Based Sys-
tems. PhD thesis, University of Karlsruhe, Karlsruhe,
Germany, June 2005.

Michael von Tessin. The clustered multikernel: An ap-
proach to formal verification of multiprocessor OS
kernels. In Proceedings of the 2nd Workshop on
Systems for Future Multi-core Architectures, Bern,
Switzerland, April 2012.

Matthew Warton. Single kernel stack L4. BE thesis,
School of Computer Science and Engineering, Uni-
versity of NSW, Sydney 2052, Australia, November
2005.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler,
and David Mazières. Making information flow ex-
plicit in HiStar. Communications of the ACM, 54(11):
93–101, November 2011.

150

citeseer.ist.psu.edu/shapiro03vulnerabilities.html
citeseer.ist.psu.edu/shapiro03vulnerabilities.html
http://www.eros-os.org/papers/sosp99-eros-preprint.ps
http://www.eros-os.org/papers/sosp99-eros-preprint.ps

	Introduction
	Background
	The L4 Microkernel Family
	Modern representatives

	Microkernel Design
	Minimality
	IPC
	Synchronous IPC
	IPC message structure
	IPC destinations
	IPC timeouts
	Communication Control

	User-level device drivers
	Resource management
	Process hierarchy
	Recursive page mappings
	Kernel memory
	Time
	Multicore


	Microkernel Implementation
	Strict process orientation and virtual TCB array
	Lazy scheduling
	Direct process switch
	Preemption
	Non-portability
	Non-standard calling convention
	Implementation language

	Conclusions

