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ABSTRACT
A common way for a distributed system to tolerate crashes is to explicitly detect them and then re-

cover from them. Interestingly, detection can take much longer than recovery, as a result of many

advances in recovery techniques, making failure detection the dominant factor in these systems’ un-

availability when a crash occurs.

This paper presents the design, implementation, and evaluation of Falcon, a failure detector with

several features. First, Falcon’s common-case detection time is sub-second, which keeps unavailabil-

ity low. Second, Falcon is reliable: it never reports a process as down when it is actually up. Third,

Falcon sometimes kills to achieve reliable detection but aims to kill the smallest needed component.

Falcon achieves these features by coordinating a network of spies, each monitoring a layer of the

system. Falcon’s main cost is a small amount of platform-specific logic. Falcon is thus the first failure

detector that is fast, reliable, and viable. As such, it could change the way that a class of distributed

systems is built.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—
Client/Server; Distributed applications; D.4.5 [Operating Systems]: Reliability—fault-tolerance

General Terms: Algorithms, Design, Experimentation, Performance, Reliability

Keywords: Failure detectors, high availability, reliable detection, layer-specific monitors, layer-specific
probes, STONITH

1 INTRODUCTION
Many distributed systems must handle crash failures, such as application crashes, operating system

crashes, device driver crashes, application deadlocks, application livelocks, and hardware failures.

A common way to handle crashes involves two steps: (1) Detect the failure; and (2) Recover, by

restarting or failing over the crashed component. Failure recovery has received much attention. For

instance, using periodic checkpoints, an entire VM can be failed over in one second [22]; finer-

grained components such as processes or threads can be restarted even faster [15, 16]. Interestingly,

failure detection has received less attention, perhaps because it is a hard problem. The fundamental

difficulty is that uncertain communication delay and execution time make it hard to distinguish a

crashed process from one that is merely slow.
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Given this difficulty, current approaches to failure detection use a blunt instrument: an end-to-end

timeout set to tens of seconds. As a result, after a crash, a system can be unavailable for a long time,

waiting for the timer to fire. Indeed, we (and everyone else) are personally familiar with the hiccups

that occur when a distributed system freezes until a timeout expires. More technically, examples of

timeouts in real systems include 60 seconds for GFS [29], at least 12 seconds for Chubby [14], 30

seconds for Dryad [32], and 60 seconds for NFS. Of course, one could set a shorter timeout—and

thereby increase the risk of falsely declaring a working node as down. We discuss end-to-end timeouts

further in Section 2.2 and for now just assert that there are no good end-to-end timeout values.

This paper introduces Falcon (Fast And Lethal Component Observation Network), a failure de-

tector that leverages internal knowledge from various system layers to achieve a new combination

in failure detection: sub-second crash detection time, reliability, and little disruption. With these fea-

tures, Falcon can (1) improve applications’ availability and (2) reduce their complexity. The target

applications are those in data centers and enterprise networks.

A failure detector is a service that reports the status of a remote process as UP or DOWN. A

failure detector should ideally have three properties. First, it should be a reliable failure detector
(RFD): when a process is up, it is reported as UP, and when it crashes, it is reported as DOWN after

a while. Second, the failure detector should be fast: the time taken to report DOWN, known as the

detection time, should be short (less than a second), so as not to delay recovery. Third, the failure

detector should cause little disruption.

The above properties are in tension with each other and with other desired properties. For in-

stance, a short detection time based on timeouts would compromise reliability, since the detector

would report as DOWN a process that is up. As an alternative, a detector could ensure reliability and a

short detection time by killing processes [6, 27] at the slightest provocation, but that would be disrup-

tive. Also, short detection times often require probing the target incessantly, which is costly. Another

challenge is comprehensiveness: how can the detector maximize its coverage of failures?

The starting point in the design of Falcon is the observation that many crash failures can be

observed readily—by looking at the right layer of the system. As examples, a process that core dumps

will disappear from the process table; after an operating system panics, it stops scheduling processes;

and if a machine loses power, it stops communicating with its attached network switch. In fact, if the

failure detector infiltrates various layers in the system, it can provide reliable failure detection using

local instead of end-to-end timeouts and sometimes without using any timeouts.

To infiltrate the system, Falcon relies on a network of spy modules or spies. At the cost of a small

amount of platform-specific logic, spies use inside information to learn whether layers are alive. If

a layer seems crashed, the spies kill it so that Falcon can report DOWN with confidence. However,

killing is a last resort and is surgical: Falcon aims to kill the smallest possible layer.

A challenge that we address in Falcon is to provide a careful, thorough, and general design for

the collection of spies, to maximize detection coverage and to avoid disruption. Spies are arranged in

a chained network, where the spy in one layer monitors the spy at the next layer up (e.g., the OS spy

monitors the application spy). Thus, in the common case, if any layer in the system crashes, some

spy will observe it. There are, however, two limiting cases in Falcon. First, Falcon cannot assume that

spies will detect every failure. Thus, Falcon includes a backstop: a large end-to-end timeout to cover

(the ideally rare) cases that the spies missed. Second, to report DOWN reliably, Falcon must be able to

communicate with the remote system. Thus, if a network partition happens, Falcon pauses until the

network heals, which we think is acceptable since a partition likely disrupts most services anyway.

We have implemented and evaluated Falcon. In its current implementation, Falcon deploys spies

on four layers: application, OS, virtual machine monitor (VMM),1 and network switch. We find that

for a range of failures, Falcon has sub-second detection time, which is one or two orders of magnitude

faster than baseline approaches. This yields higher availability: adding Falcon to ZooKeeper [31]

(which provides configuration management, naming, and group membership) and to a replication

library [44] reduces unavailability after some crashes by roughly 6×. Falcon’s CPU overhead and per-

platform requirements are small, and it can be integrated into an application with tens of lines of code.

1Our current implementation is geared to a system with virtualization, but Falcon can be applied to a system
with no virtual machines (§6.3).



Finally, Falcon can simplify applications that use a failure detector: with RFDs, such applications

can shed complex logic that handles failure detector errors (e.g., a replicated state machine can be

implemented with primary-backup [9] instead of Paxos [35], thereby using 21% less code, in our

rough estimate).

The contributions of this work are as follows:

• The first viable and fast RFD. Previous RFDs (§2.2, §7) have drawbacks that make them imprac-

tical: large timeouts (to avoid killing aggressively) or disruption from small timeouts. Perhaps

for this reason, the conventional wisdom is that a viable RFD cannot be built (§6.1), and indeed,

most current failure detectors are unreliable (i.e., not RFDs). Yet, a viable RFD could change the

way that we build a class of distributed systems (§6.5).

• Spies, a spy network, and their composition with existing techniques (§2.3). Many of Falcon’s

elements are not new; for instance, killing to achieve reliability has been proposed before and

so, for that matter, have end-to-end timeouts, which Falcon uses as a backstop. The new aspects

of Falcon are (a) layer-specific monitors (spies); (b) a network of chained spies, where a spy

monitors the spy in the next higher layer; and (c) composing these two with existing techniques.

We note that the purpose of (a) and (b) is not just fast failure detection; they also reduce false

suspicion and kill surgically.

• The design of Falcon (§3). We provide a concrete, complete, and sound design for Falcon, based

on the key high-level ideas above.

• The implementation and evaluation of Falcon (§4, §5).

2 PROBLEM, PERILS, AND PRINCIPLES

2.1 Problem statement and setting
A reliable failure detector (RFD) is a service that, upon being queried about the operational status of

a (possibly remote) process p, reports p as UP or DOWN, such that [19]:

• if the RFD reports p as DOWN, then p has crashed;

• if p crashes, then the RFD eventually reports p as DOWN (and does so ever after).

If p crashes, the second property above allows the RFD to report p as UP for some time—called

the detection time—before it reports DOWN. A fast RFD is one with short detection time. We wish

to build a fast RFD that is viable, meaning that it uses few resources, and that minimizes disruption,

meaning that it kills only if necessary and, when it does so, kills only the smallest needed component.

Our target setting is a data center or enterprise system. The target applications range from small-

scale Web applications that use primary-backup replication [9]; to large-scale storage systems like

GFS [29] and Dynamo [25]; to distributed systems that perform batch computations (e.g., MapRe-

duce [24], Dryad [32], and Hadoop [1]); to services, such as Chubby [14] and ZooKeeper [31], that

provide common distributed systems functions (group membership, leases, locks, etc.) to other ap-

plications.

We assume that (limited) modifications to the software stack are permissible; this assumption

holds in our target setting, in which there is a single administrative domain, and may hold in other

controlled settings as well. Likewise, we assume that users are trustworthy; access control is orthog-

onal and could be added to our design. Our approach handles crash failures of any kind; handling

Byzantine failures is future work. Also, we design for monitoring within a single data center (though

our solution could be used across data centers, with some drawbacks, as discussed in Section 6.4).

2.2 Why is failure detection vexing?
The fundamental difficulty in failure detection is that it is hard to make judgments that are both quick

and accurate—a problem that exists in many intelligence contexts. This difficulty leads to a choose-

two-of-three situation, in which it is hard to achieve all three of the goals of fast detection, reliability,

and little disruption but straightforward to achieve any two of them.

For instance, a failure detector (FD) can achieve accuracy and little disruption by dithering in its

reply until there is no question of failure. Alternatively, an FD can achieve a fast detection time if it is

willing to jump to conclusions, sometimes producing inaccurate suspicions of failure, at which point



there are two ways to handle the inaccuracy. First, the FD can back up its misjudgments by killing the

target; however, in converting bad calls into needless kills, this approach sacrifices the goal of little

disruption. Second, the FD can give wrong answers, sacrificing reliability; such FDs are unreliable
failure detectors (UFDs) and force applications—if they are to be responsible—to deal with added

complexity, as we elaborate below.

We now highlight the above trade-offs in the context of existing approaches to failure detection;

Section 2.3 describes the high-level ideas that we use to break the impasse. The prevalent approach to

failure detection uses end-to-end timeouts. The problem is: how does one choose the timeout value?

Small values lead to premature timeouts, while large timeouts lead to large detection times. In fact,

there may not be a perfect timeout value: the difference in latency between normal and delayed re-

quests in data center applications can be several orders of magnitude (e.g., [24]). And while adaptive

timeouts (e.g., [11, 21, 30]) might seem promising, adaptation requires time; thus, if system respon-

siveness changes rapidly (e.g., from bursty load), one does not obtain an RFD.

To get an RFD, the failure detector can kill the process’s machine (or virtual machine [5]) before

reporting the process as DOWN (e.g., [6, 27]); this killing-based discipline is known as STONITH (for

Shoot The Other Node In The Head).2 Unfortunately, this approach causes disruption: what used to

be too-short timeouts convert to needless killing. Other RFD approaches include special hardware

(e.g., [52, 53]) or real-time synchronous systems built to bound delays in every case. Such systems

are expensive and inappropriate for large data centers, where cost is a key consideration.

Why not give up on RFDs and instead implement an unreliable failure detector (UFD), which is

explicitly allowed to make mistakes? UFDs require applications to implement distributed algorithms

that handle the case that the UFD reports DOWN when a process is up (and just slow). Unfortunately,

such algorithms carry added complexity. An example is Paxos-based consensus [35], used in various

systems [13, 14, 18, 31, 33, 39, 43, 49]. Under Paxos, replicas never diverge, even if the system

incorrectly detects a crash of the current leader and thereby obtains multiple leaders. Yet Paxos’s

complexity is well known, as evidenced by the many published papers that try to explain it [18, 34,

36, 37, 40, 45].

Developers have embraced UFDs because of the conventional wisdom that it is impossible to im-

plement a fast RFD that is viable (§6.1). In this paper, we demonstrate that this wisdom is misleading,

at least in the context of data centers.

2.3 Design principles
The design principles underlying Falcon are as follows.

Make it reliable. With a reliable failure detector, other layers need not handle failure detector mis-

takes and the resulting complexity.

Avoid end-to-end timeouts as the primary detection mechanism. End-to-end timeouts can serve as

a catch-all to detect unforeseen failures, but they take too long to detect common failures.

Peek inside the layers. Layer-specific knowledge can indicate crashes accurately and quickly. For

example, if a process disappears from the OS’s process table, it is dead, or if a key thread exits, the

process is as good as dead. Extracting this information requires a module, which we call a spy, at

each layer. A spy may use timeouts on internal events (e.g., the main loop has not executed in 1

second), but those timeouts are better informed and shorter than end-to-end timeouts, as they reflect

local, more predictable behavior.

Kill surgically, if needed. A spy may not always observe failures correctly, but it must be reliable.

Thus, it may kill when it suspects a crash (e.g., the layer is acting erratically or a local timeout has

fired). Killing is expensive, so the RFD should kill the smallest necessary component, rather than the

entire machine, as in [27, 51, 53]. Such surgical killing conserves resources (e.g., a process is killed

while others in the same machine are not) and improves recovery time (e.g., only the process must be

restarted, not the machine). A similar argument was made by [15, 16] in the context of reboot.

2STONITH is folklore knowledge that appears to have been around since the 1970s but not in published
form.
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Figure 1—Architecture of Falcon. The application spy provides accurate information about whether the
application is up; this spy is the only one that can observe that the application is working. The next spy
down provides accurate information not only about its layer but also about whether the application spy is
up; more generally, lower-level spies monitor higher-level ones.

Monitor the monitors. Spies are embedded in layers and can crash with them, so spies too should

be monitored. This calls for a spy network, in which lower-level spies monitor higher-level ones.

3 DESIGN OF FALCON
Figure 1 depicts Falcon’s architecture. Falcon consists of a client library as well as several spy mod-
ules (or spies) deployed at various layers of the system. The client library provides the RFD interface

to the client, and it coordinates the spies. Roughly speaking, the client library takes as input the iden-

tifier of a target, which specifies a process whose operational status the client would like to know,

and returns UP or DOWN. A spy is a layer-specific monitor. A spy is named by the layer monitored

(e.g., the OS spy monitors the OS) but may have parts running at several layers. The layers monitored

by our current implementation are application, OS, virtual machine monitor (VMM), and network.

Falcon assumes that lower layers enclose higher ones, meaning that if a lower layer crashes, the layers

above it also crash or stop responding. This assumption holds by design. As an example, if the VMM

crashes, then both the OS and application crash; as another example, if the network crashes, then the

higher layers become unresponsive.

function description

init(target) register with spies
uninit() deregister with spies
query() query the operational status

set_callback(callback) install callback function
clear_callback() cancel callback function

start_timeout(timeout) start end-to-end timeout timer
stop_timeout() stop end-to-end timeout timer

Figure 2—Falcon RFD interface to clients.

The high-level difficulty in realizing

Falcon out of spies is how it should in-

teract with them and use their knowledge

to meet the desired properties. Our experi-

ence is that ad-hoc approaches lead to er-

roneous designs or ones that do not simul-

taneously achieve reliability, fast detection,

and minimal disruption (§6.2). Achieving

these properties together requires carefully

addressing the following questions: what in-

terfaces are exposed by the RFD and the

spies, what spies do and how, how to or-

chestrate spies, and how to handle vari-

ous corner cases. The next sections address

these questions in turn, focusing on aspects common to all spies. Section 4 describes the details of

the spies in our implementation.

3.1 RFD interface
The RFD interface that Falcon presents to clients is shown in Figure 2. Function init indicates the

target to be monitored, which identifies each layer (process name, VM id, VMM IP address, switch IP

address). Function query returns UP or DOWN for the target. However, a client may wish to monitor

the target continuously while waiting for a response or another event. Thus, rather than invoking



query repeatedly, it may be more efficient for the client to use a callback interface. To that end,

function set_callback installs a callback function to be called when a spy reports LAYER_DOWN or

the application spy reports LAYER_UP. Function clear_callback uninstalls the callback function. To

support end-to-end timeouts, Falcon needs to know when to start and stop the timeout timer, which

the client indicates by calling functions start_timeout and stop_timeout.

3.2 Objective and operation of spies

remote-procedure register()
add caller to Clients
return ACK

remote-procedure cancel()
remove caller from Clients
return ACK

remote-procedure kill()
kill layer we are spying on and wait to confirm kill
return ACK

background-task monitor()
while true

sense layer and set rc accordingly
if rc = CERTAINLY_DOWN then

callback(LAYER_DOWN)
if rc = CERTAINLY_UP then

if have not called callback within UP-INTERVAL then
callback(LAYER_UP)

if rc = SUSPECT_CRASH then
kill()
callback(LAYER_DOWN)

function callback(status)
for each client ∈ Clients do

send status to client

Figure 3—Pseudocode for spies.

A given layer is supposed to per-

form some activity, and if the layer

is performing it, then the layer

is alive by definition. In a Web

server, for example, activity may

mean receiving HTTP requests or

an indication that there are no re-

quests; for a map-reduce task, ac-

tivity may mean reading and pro-

cessing from the disk; for a nu-

merical application, activity may

mean finishing a small stage of the

computation; for a generic server,

it may mean placing requests on

an internal work queue and wait-

ing for a response; for the OS, it

may mean scheduling a ready-to-

run process; and for a VMM, it

may mean scheduling virtual ma-

chines and executing internal func-

tions.

The purpose of a spy is to

sense the presence or absence

of such activity using specialized

knowledge—which we sometimes

call “inside information”. A spy

exposes three remote procedures:

• register() to register a re-

mote callback (which is dis-

tinct from the callback to the

client in §3.1: the one here goes from a spy to the client library);

• cancel() to cancel it; and

• kill() to kill the monitored layer.

If the layer that the spy is monitoring crashes, the spy immediately calls back the client library,

reporting LAYER_DOWN; if the layer is operational, the spy calls back the client library periodically,

reporting LAYER_UP.

A spy is designed to recognize the common case when the monitored layer is clearly crashed or

healthy. What if the spy is uncertain? To support reliable failure detection, a report of LAYER_DOWN

must be correct, always. (No exceptions!) Thus, if the spy is inclined to report LAYER_DOWN but

is not sure, the spy resorts to killing: it terminates the layer that it is monitoring and then reports

LAYER_DOWN. (Section 4 explains how spies at each layer kill reliably; the basic idea is to use a

component below the layer to be killed.) Of course, spies should be designed to avoid killing.

Figure 3 gives the pseudocode for our spies. UP-INTERVAL is the minimum duration to wait

before a spy indicates that the layer is up, to prevent the spy from wasting resources with too frequent

LAYER_UP reports; a reasonable value for UP-INTERVAL is 30 seconds. The value of UP-INTERVAL

does not affect detection time: a spy reports that the layer is down as soon as it knows.



Below, in Section 3.3, we describe how the client library coordinates the spies, assuming that (1)

spies are ideal and (2) network partitions do not happen. Sections 3.4 and 3.5 back off of these two

assumptions in turn.

3.3 Orchestration: spies spying on spies
To report the operational status of the target, the client library uses the following algorithm. On

initialization, it registers callbacks at each spy at the target and sets a local status variable to UP. If

the client library receives a LAYER_DOWN callback from any of the spies, it sets the status variable

to DOWN. When the client library receives a query from the application, it returns the value of the

status variable.

To see why this algorithm works, first note that if the target application is responsive then none

of the spies returns LAYER_DOWN—because we are assuming ideal spies—and therefore the client

library reports the status of the target correctly. If the target application crashes but the application

spy remains alive, then the application spy returns LAYER_DOWN and subsequently the client library

reports the status of the target correctly. However, the application spy may never return, because it

might have crashed. In that case, we rely on the spy at the next level—the OS spy—to sense this

problem: in fact, the role of the layer-L spy can be seen as monitoring the layer-(L + 1) spy, as

shown in Figure 1. So here, the OS spy is monitoring the application spy, and if the application spy

is crashed, the OS spy will eventually return LAYER_DOWN—provided the OS spy itself is alive. If

the OS spy is not alive, this procedure continues at the spy at the next level, and so on. The ultimate

result is that if a spy never responds, a lower-level spy will sense the unresponsive spy and will report

LAYER_DOWN, causing the client library to report DOWN to the client.

We have not yet said how the spy on layer L + 1 is monitored by the spy on layer L. The spy

on layer L + 1 has a component at layer L, for killing and for responding to queries. Given this

component, the spy on layer L can monitor the spy on layer L + 1 by monitoring layer L itself. This

avoids the complexity of a signaling protocol among spies. It works because, assuming ideal spies,

the spy on layer L + 1 is down (permanently unresponsive) if and only if layer L is down.

3.4 Coping with imperfect spies
The last section assumed ideal spies. In this section, we identify the types of mistakes that a spy can

make, and we explain how Falcon deals with these mistakes. While Falcon may take drastic actions

(killing or waiting for a long time), we expect them to be rare.

There are four types of spy errors that we consider, as shown in Figure 4. Error A happens

when a spy does not recognize a rare failure condition and thus wrongly thinks that a layer is up;

for instance, an OS spy thinks that the OS is up because it shows some signs of life, yet the OS

has stopped scheduling requests. Error B happens when there is a violation in the assumption from

Section 3.3 that a layer L is up if and only if the spy on layer L + 1 is responsive. Error C is a

spy’s reporting LAYER_DOWN when either the monitored layer is up or any spy above the monitored

layer is up. Error D occurs when none of the spies responds, because of a network problem such as a

partition.

tag error / limiting case cause effect

A layer L is down, layer L − 1 is up, but spy on layer

L reports LAYER_UP

bug in layer-L spy triggers end-to-end

timeout and kills

B layer L is down, layer L − 1 is up, but spy on layer

L is unresponsive

bug in layer-L spy triggers end-to-end

timeout and kills

C layer L is up, but spy on layer L or below reports

LAYER_DOWN

should not happen would compromise RFD

properties

D none of the spies responds network partition RFD blocks or watchdog

timer fires

Figure 4—Errors and limiting cases in Falcon, and their effects.



function init(target)
for L← 1 to N do

invoke register() at spy in target[L]
Target← target
Status← UP

Callback← dummy_function

function uninit()
for L← 1 to N do

invoke cancel() at spy in Target[L]

function query()
return Status

function set_callback(callback)
Callback← callback

function clear_callback()
Callback← dummy_function

function start_timeout(timeout)
start countdown timer with value timeout

function stop_timeout()
stop countdown timer

upon receiving callback (status) from spy in Target[L] do
if status = LAYER_DOWN then

Status← DOWN

Callback(DOWN)
if status = LAYER_UP and L = N then Callback(UP)

upon expiration of countdown timer do
for L← N downto 1 do

invoke kill() at spy in Target[L]
if L �= 1 then wait for reply for SPY_RETRY_INTERVAL

else wait for reply // blocks on network partition; see §3.5.
if got reply then

Status← DOWN

Callback(DOWN)
return

Figure 5—Pseudocode for the client library. N is the number of monitored layers and the layer number of
the application.

Errors A and B cause the query function to always return UP despite the application’s being

down. To address this problem, Falcon has a backstop: an end-to-end timeout started by the client. If

this end-to-end timeout expires, Falcon kills the highest layer that it can and subsequently reports the

target as DOWN.

Error C is not handled by Falcon and in fact Falcon is expressly designed not to have this error:

when a spy reports LAYER_DOWN, it must absolutely ensure that the layer is down, which means

disconnected from the outside world. Error D is addressed in Section 3.5.

Figure 5 describes the client library’s pseudocode. There are several points to note here. First,

end-to-end timeouts are used to indicate a failure only in the unlikely case that none of the spies

can determine that a layer is up or down. Second, each spy’s kill procedure is invoked by the client

library when the end-to-end timeout expires. This procedure attempts to kill the highest layer and,

if not successful after SPY-RETRY-INTERVAL, targets each lower layer successively. In this manner,

killing is surgical. A reasonable value for SPY-RETRY-INTERVAL is 3 seconds; this parameter affects



detection time (by imposing a floor) but only when a large end-to-end timeout expires, an event that

we expect to be rare.

3.5 Network partition
We said above that lower-level spies monitor higher-level ones, but no spy monitors the lowest level

spy. Is that a problem? No, because that spy inspects the network switch attached to the target, so it is

conceptually a spy on the target’s network connectivity. Thus, if the client library does not hear from

that spy, then the network is slow or partitioned. (Our current implementation assumes that a machine

is attached to one switch; we briefly discuss the case of multiple switches in Section 6.4.)

There are three ways to handle network partition. First, the client library can block until it hears

from the switch; this is what our implementation does. This is reasonable because during a network

partition, other vital services (DNS, file servers, etc) are likely blocked as well, making the system

unusable. Second, the client library can, after the client-supplied timeout expires, call back with “I

don’t know”; this is an implementation convenience that is conceptually identical to blocking. Third,

the client library can report DOWN after it is sure that a watchdog timer on the switch has disconnected

the target; meanwhile, in ordinary operation, the watchdog is serviced by heartbeats from the client

library to the switch.

3.6 Application restart
If the application crashes or exits, and restarts, the client library should not report the application as

UP because clients typically want to know about the restart (e.g., the application may have lost part

of its state in a crash). Therefore, when the application restarts, Falcon treats it as a different instance

to be monitored, and the original crashed instance is reported DOWN.

To implement the above, the spy on a layer labels the layer with a generation number, and the spy

includes this number in messages to the client library. Upon initialization, the client library records

each layer’s generation number. If it receives a mismatched generation number from a spy, then

the associated layer has restarted and the client library considers the monitored instance as down.

(Generation numbers are omitted from the pseudocode for brevity.)

Implementing generation numbers carries a subtlety: the generation number of a layer needs to

increase if any layer below it restarts. Thus, a spy at layer L constructs its generation number as

follows. It takes the entire generation number of layer L − 1, left shifts it 32 bits, and sets the low-

order 32 bits to a counter that it increments on every restart. (The base case is the generation number

of the lowest layer, which is just a counter.) At the application level, therefore, the generation number

is a concatenation of 32-bit counters, one for each layer. 32 bits are sufficient because a problem

occurs only if (a) the counter wraps around very quickly as crashes occur rapidly, and then (b) the

counter suddenly stops exactly where it was the last time that the client library checked.

4 DETAILS OF SPIES
The previous section described Falcon’s high-level design. This section gives details of four classes

of spies that we have built: application spies, an OS spy, a virtual machine monitor (VMM) spy, and

a network connectivity spy. We emphasize that these spies are illustrative reference designs, not the

final word; one can extend spies based on design-time application knowledge or on failures observed

in a given system. Nevertheless, the spies that we present should serve as an existence proof that it is

possible to react to a large class of failures.

As shown in Figure 6, a spy has two components:

1. Inspector: This component is embedded in the monitored layer and gathers detailed inside infor-

mation to infer the operational status, for example by inspecting the appropriate data structures.

2. Enforcer: This component communicates with the client library and is responsible for killing the

monitored layer; for these reasons, it resides one layer below the monitored layer. This component

may also use inside information.

A spy has only two technical requirements (§3.2): it must eventually detect crashes of the layer

that it is monitoring (and even then, Falcon handles the case that the spy fails in this charge, per §3.4),
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Figure 6—Architecture of spies. A spy has two components: an inspector that gathers inside information
and an enforcer that ensures the reliability of LAYER_DOWN reports (and may also use inside information).
The client library communicates with the enforcer.

and it must be reliable, meaning that its LAYER_DOWN answers are accurate. However, in practice,

a spy should be more ambitious; it should provide guarantees that are broader than the letter of its

contract implies. To explain these guarantees and how they are achieved, we answer the questions

below for each spy in our implementation, which is depicted in Figure 7.

• What are the spy’s components, and how do they communicate? There is a lot of latitude here,

but we discuss in Section 6.3 the possibility of a uniform intra-spy interface.

• How does the spy detect crashes with sub-second detection time? Although a spy is required to

detect crashes of the monitored layer only eventually, it is most useful if it does so quickly.

• How does the spy avoid false suspicions of crashes and the resulting needless kills? Avoiding

false suspicion is not an explicit requirement of a spy, but it is far better if the resulting needless

kills are kept to a minimum, to meet our goal of little disruption.

• How does the spy give a reliable answer? We break this question into two: How does the spy

know for sure when its layer is down? If the spy is unsure, how does it kill the layer to become

sure?

• What are the implementation details of the spy? Spies are unavoidably platform-specific, and

we try to give a flavor of that specificity as we describe the implementation details. Section 6.3

discusses how Falcon might work with a different set of layers (e.g., with a JVM and nested VMs,

or without VMs) and different instances of each layer (e.g., Windows instead of Linux).

Application spies. All of our application spies have a common organization and approach.

Components. The inspector is a dedicated thread inside the application; it calls a function ���,

whose implementation depends on the application. For example, in our primary-backup application

spy, ��� checks whether the main event loop is processing events; in our ZooKeeper [31] spy, ���
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Figure 7—Our implementation of Falcon.



tests whether a client request has been recently processed, while a separate component submits no-op

client requests at a low rate.

The enforcer is a distinguished high-priority process, the app-enforcer, which serves as the en-

forcer for all monitored applications on the same OS. An assumption is that if the OS is up, then so is

the app-enforcer; this is an instance of the assumption, from Section 3.3, that “if layer-L is up, then so

is the spy on layer-(L + 1)”. As discussed in Section 3.4, if the assumption is violated (which is un-

likely), then Falcon relies on an end-to-end timeout. The enforcer communicates with each inspector

over a connected inter-process communication (IPC) channel.

Sub-second detection time. If the inspector locally detects a problem, it closes its handle to the

connected IPC channel, causing the enforcer to suspect a crash immediately (which it then handles per

Reliability, below). Similarly, if the application process exits or crashes, then it brings the inspector

down with it, again causing an immediate notification along IPC.

In addition, every Tapp-check time units, the enforcer queries the inspector thread, which invokes

���. The enforcer infers a crash if ��� returns “down”, if the IPC handle returns an error, or if the

inspector thread does not respond within an application specific Tapp-resp time; the enforcer again

handles these cases per Reliability, below. We note that ��� can use timing considerations apart from

Tapp-resp and Tapp-check to return “down” (e.g., the inspector might know that if a given request is not

removed from an internal queue within 10 ms, then the application is effectively down).

The periodic queries from enforcer to inspector achieve sub-second detection time in the usual

cases because our implementation sets Tapp-check to 100 ms. While the precise choice is arbitrary,

the order of magnitude (tens or hundreds of milliseconds) is not. Checking does not involve the

network, and it is inexpensive—less than 0.02% CPU overhead per check in our experiments (see

Figure 14, Section 5.4 and divide by 10 to scale per check). That is, we accept a minimal processing

cost to get rapid detection time in the usual cases. The remaining case is covered by Tapp-resp, which

our implementation sets to 100 ms of CPU time, yielding sub-second detection time under light to

medium load.

Avoiding false suspicions. The application spy avoids false suspicion in two ways. First, as men-

tioned above, the enforcer measures Tapp-resp by the CPU time consumed by the monitored application,

not real time; this is an example of inside information and avoids the case that the enforcer declares

an unresponsive application down when in fact the application is temporarily slow because of load.

We note that this approach does not undermine any higher-level (human or application) deadlines

since those are expressed and enforced by Falcon’s end-to-end timeout (§3.4).

A second use of inside information is that Tapp-resp is set by the application itself. (Indeed, as

mentioned in Section 2.3, timeouts are ideally local and application-specific.) One choice is Tapp-resp =
∞; in that case, if the app inspector is unresponsive, then Falcon relies on the end-to-end timeout.

Or, an application might expect to be able to reply quickly, given CPU cycles, in which case it can set

a smaller value of Tapp-resp for faster detection when the application process is unexpectedly stuck.

Reliability. If the enforcer suspects a crash, it inspects the process table. If the application process

is not there, the enforcer no longer has doubt and reports LAYER_DOWN to the client library. On the

other hand, if the process is in the process table, then the enforcer kills it (by asking the OS to do so)

and waits for confirmation (by polling the process table every 5 ms) before reporting LAYER_DOWN.

If the process does not leave the process table, then Falcon relies on the end-to-end timeout.

Implementation details. The inspector and app-enforcer run on Linux, and we assign app-enforcer

the maximum real-time priority. We also ����� it (to prevent swap out). The inspector is implemented

in a library; using the library requires only supplying ��� and a value of Tapp-resp. The IPC channel be-

tween inspector and app-enforcer is a Unix domain socket. The enforcer kills by sending a 	
��
.

We are assuming that process ids are not recycled during the (short) process table polling interval; if

a pid is recycled, the end-to-end timeout applies.

OS spy. Our OS spy currently assumes virtualization; Section 6.3 discusses how Falcon could han-

dle alternate layerings.

Components. The inspector consists of (a) a kernel module that, when invoked, increments a

counter in the OS’s address space and (b) a high-priority process, the incrementer, that invokes this

kernel module every TOS-inc time units, set to 1 ms in our implementation. The enforcer is a module



inside the VMM. The communication between the enforcer and the inspector is implicit: the enforcer

infers that there was a crash if the counter is not incremented. Before detailing this process, we

briefly consider an alternate OS spy: the enforcer could inspect a kernel counter like jiffies, instead of

a process-incremented counter. We rejected this approach because an observation of increasing jiffies

does not imply a functional OS. With our approach, in contrast, if the counter is increasing, then the

enforcer knows that at least the high priority incrementer process is being scheduled. The cost of this

higher-level assurance is an extra point of failure: if the incrementer crashes (which is unlikely), then

Falcon treats it as an OS crash. Specifically, the OS enforcer would detect the lack of increments, kill,

and report LAYER_DOWN.

Sub-second detection time. Every TOS-check time units, the enforcer checks the OS. To do so, it first

checks whether the VM of the OS is running. If not, the enforcer reports LAYER_DOWN to the client

library. Otherwise, it checks whether the counter has incremented at least once over an interval of

TOS-resp time units. If not, the enforcer suspects that the OS (or virtual machine) has crashed, which it

handles per Reliability below. This approach achieves sub-second detection time by choosing TOS-check

and TOS-resp to be tens or hundreds of milliseconds; our implementation sets them to 100 ms.

Avoiding false suspicions. Given the detection mechanism above, a false suspicion happens when

the counter is not incremented, yet the VM is up. This case is most likely caused by temporary

slowness of the VM, which in turn results from load on the whole machine. To ensure that the OS spy

does not wrongly declare failure in such situations, we carefully choose TOS-inc, TOS-check, and TOS-resp

to avoid premature local timeouts most of the time, even in extreme cases. This approach is inexact, as

the VM could in theory slow down arbitrarily—say, due to a flood of hardware interrupts—triggering

a premature local timeout. However, we do not expect this case to happen frequently; if it happens,

the enforcer will kill the OS, but the spy will not return incorrect information.

We validate our choice of parameters by running a fork+exec bomb inside a guest OS, observing

that in a 30 minute period (18,000 checks) the enforcer sees, per check, a mean of 97.8 increments,

with a standard deviation of 3.9, and a minimum of 34 (where one increment would have sufficed to

satisfy the enforcer). Of course, the operators of a production deployment would have to validate the

parameters more extensively, using an actual peak workload. We note that these kinds of local timing

parameters have to be validated only once and are likely to be accurate; this is an example of inside

information (§2.3) and does not have the disadvantages of end-to-end timeouts (§2.2).

Reliability. If the VM is no longer being scheduled, the enforcer can verify that case, using its

access to the VMM. If the enforcer suspects a crash, it asks the VMM to stop scheduling the VM and

waits for confirmation.

Implementation details. Like the app-enforcer, the incrementer is a Linux process to which we

assign the maximum real-time priority and which we �����. Our VMM is standard Linux; the VMs

are QEMU/KVM [46] instances. The enforcer runs alongside these instances and communicates with

them through the �����	
� daemon, which exposes the �����	
 API, an interface to common

virtualization functions [41]. We extend this API with a call to check the incrementer’s activity. Since

all calls into �����	
� are blocking, we split the OS enforcer into two types of processes. A singleton

main process communicates with the client library and forks a worker process, one per VM, sharing

a pipe with the worker process. The workers use the �����	
 API to examine the guests’ virtual

memory, kill guest VMs, and confirm kills.

VMM spy. Our implementation assumes the ability to deploy new functionality on the switch. We

believe this assumption to be reasonable in our target environment of data centers and enterprise

networks (§2.1), particularly given the trend toward programmable switches. We also assume that

the target is connected to the network through a single interface; Section 6.4 discusses how this

assumption could be relaxed.

Components. The inspector is a module in the VMM, while the enforcer is a software module

that runs on the switch to which the VMM host is attached. The enforcer infers that the VMM is

crashed if, after a period of time in which the switch has not received network packets through the

port to which the VMM is connected, the enforcer cannot reach the inspector (this detection method

saves network bandwidth, versus more active pinging). The two communicate by RPC over UDP.

Sub-second detection time. Every TVMM-check time units, the enforcer performs an aliveness check.



This check takes one of two forms. Usually, the enforcer checks whether the switch has received net-

work packets from the VMM over the prior interval. If this check fails, or if an interval of TVMM-check-2

time units (set to 5 seconds in our implementation) has passed since the last probe, the enforcer probes

the inspector with an RPC. If it does not get a response within TVMM-resp time units (set to 20 ms in

our implementation), it does NVMM-retry more tries (set to 5 in our implementation), for a total waiting

period of TVMM-resp · (NVMM-retry + 1) time units (120 ms in our implementation). After this period, the

enforcer suspects a crash and handles that case per Reliability, below. Similar to the other spies, this

one achieves sub-second detection time by choice of TVMM-check: 100 ms in our implementation.

Avoiding false suspicions. First, our enforcer test is conservative: most of the time, any traffic

from the VMM host placates the enforcer. Second, we validate our choice of parameters by running

an experiment where 2000 processes on the VMM contend for CPU. We set the enforcer to query the

inspector 100,000 times, observing a mean response time of 397 μs, with standard deviation of 80 μs,

and a maximum of 12.6 ms, which suffices to satisfy the enforcer. As with the OS spy, the operators

would need to do more extensive parameter validation for production. Finally, although NVMM-retry

is a constant in our implementation, a better implementation would set NVMM-retry proportionately

to the traffic into the VMM. Then the test would permit more retransmissions under higher load,

accommodating a message’s lower likelihood of getting through.

Reliability. If it suspects a crash, the enforcer “kills” the VMM, by shutting down the network

port to which the VMM is connected. The enforcer has no doubt once it has shut down the port, at

which point it reports LAYER_DOWN to the client library.

Implementation details. The VMM inspector runs as a process on the VMM (which is standard

Linux, as described above). The VMM enforcer is a daemon process that we run on the DD-WRT

open router platform [23], which we modified to map connected hosts to physical ports and to run

our software.

Network spy. The inspector is a software module that runs on the network switch connected to the

target, and the enforcer is a module in the client library. However, under our current configuration and

implementation of Falcon, the network spy does not check for failures and does not affect Falcon’s

end-to-end behavior or our experimental results. The reason is as follows. Falcon’s knowledge of the

network is limited to the switch attached to the target, so Falcon has no way to (a) know whether the

switch is crashed or just slow, and (b) kill the switch if it is in doubt. The consequence is that Falcon

blocks when the switch is unresponsive.

Localizing network failures via modules in multiple switches is future work (§6.4). For now, we

leave the network spy in our design as a placeholder for this extension.

5 EVALUATION OF FALCON
To evaluate our Falcon implementation, we ask to what degree it satisfies our desired features for a

failure detector (FD)—short detection time, reliability, little disruption—and at what cost. We also

translate those features into higher-level benefits for the applications that are clients of Falcon. To do

so, we experiment with Falcon, with other failure detectors [11, 21, 30] as a baseline, with ZooKeeper,

with ZooKeeper modified to use Falcon, with a minimal Paxos-based replication library [44], with

that library modified to use Falcon, and with a primary-backup-based replication library that uses

Falcon. Figure 8 summarizes our evaluation results.

Most of our experiments involve two panels. The first is a failure panel with 12 kinds of model

failures that we inject to evaluate Falcon’s ability to detect them (the kernel failures are from [42]).

The second is a transient condition panel with seven kinds of imposed load conditions, which are

not failures, to evaluate Falcon’s ability to avoid false suspicions. The failure panel is listed in Fig-

ure 9, and the transient condition panel is detailed in Section 5.3. Since the panels are synthetic, our

evaluation should be viewed as an initial validation of Falcon, one within the means of academic re-

search. An extended validation requires deploying Falcon in production environments and exposing

it to failures in-the-wild.

Our testbed is three hosts connected to a switch. The switch is an ASUS RT-N16. The software on

the switch is the DD-WRT v24-sp [23] platform (essentially Linux), extended with our VMM enforcer
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• For these failure modes, Falcon’s 99th percentile
detection time is several hundred ms; existing failure
detectors take one or two orders of magnitude longer.
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• As an RFD, Falcon enables primary-backup
replication [9], which has 50% less replica overhead than
Paxos [35], and which requires less complexity (21%
less code in our comparison).

§5.5

• Falcon’s CPU costs at each layer are single digits (or less)
of percentage overhead.

§5.4

inexpensive viability

• Falcon requires per-platform code: ≈2300 lines in our
implementation. However, the added code is likely
simpler than the application logic that can be removed by
using an RFD.

§5.5

• Falcon can be introduced into an application with tens or
hundreds of lines of code.

§5.2, §5.5

Figure 8—Summary of main evaluation results.

(§4). Our hosts are Dell PowerEdge T310, each with a quad-core Intel Xeon 2.4 GHz processor, 4 GB

of RAM, and two Gigabit Ethernet ports. Each host runs an OS natively that serves as a VMM. The

native (host) OS is 64-bit Linux (2.6.36-gentoo-r5), compiled with the ��� module [46], running

QEMU (v0.13.0) and a modified ������� [41] (v0.8.6). The virtual machines (guests) run 32-bit

Linux (2.6.34-gentoo-r6), extended with a kernel module and accompanying kernel patch (for the OS

inspector).

5.1 How fast is Falcon?
Method. We compare Falcon to a set of baseline failure detectors (FDs), focusing on detection

times under the failure panel.

Figure 10 describes the baselines. These FDs are used in production or deployed systems (the

φ-accrual FD is used by the Cassandra key-value store [17], static timers are used in many systems,

etc.); we borrow the code to implement them from [55]. All of these FDs work as follows: the client

pings the target according to a fixed ping interval parameter p, and if the client has not heard a

response by a deadline, the client declares a failure. We define the timeout T to be the duration from

when the last ping was received until the deadline for the following ping. The difference in these FDs

is in the algorithm that adjusts the timeout or deadline (based on empirical round-trip delay and/or on

configured error tolerance).

We configure the baselines with p = 5 seconds, which is pessimistic for Falcon, as this setting

allows the baselines to detect failures more quickly than they would in data center applications, where

ping intervals are tens of seconds [14, 29, 32], as noted in the introduction. Likewise, we configure

the φ-accrual failure detector to allow many more premature timeouts (one out of every 100 and 1000

ping intervals) than would be standard in a real deployment, which also decreases its timeout and



where injected? what is the failure? what does the failure model?

application forced crash app. memory error, assert failure, or
condition that causes exit

application app inspector reports LAYER_DOWN inside information that indicates an
application crash

application/
Falcon itself

non-responsive app inspector since the app inspector is a thread inside the
application, this models a buggy application
(or app inspector) that cannot run but has
not exited

kernel infinite loop kernel hang or liveness problem
kernel stack overflow runaway kernel code
kernel kernel panic unexpected condition that causes assert

failure in kernel

VMM/host VMM error; causes guest termination VMM memory error, assert failure, or
condition that causes guest exit

VMM/host ������ ��	
 on host hardware crash (machine is separated from
network)

Falcon itself crash of app enforcer bug in Falcon app spy
Falcon itself crash of incrementer bug in Falcon OS spy
Falcon itself crash of OS enforcer bug in Falcon OS spy
Falcon itself crash of VMM inspector bug in Falcon VMM spy

Figure 9—Panel of synthetic failures in our evaluation. The failures are at multiple layers of the stack and
model various error conditions.

baseline FD T: timeout (ms) error parameters

Static Timer 10,000 0.0 timer = 10, 000
Chen [21] 5,001 0.0 α = 1 ms
Bertier [11] 5,020 0.0 β = 1, φ = 4, γ = 0.1,

mod_step = 0
φ-accrual [30] 4,946 0.01 φ = 0.4297
φ-accrual [30] 4,995 0.001 φ = 0.4339

Figure 10—Baseline failure detectors that we compare to Falcon. The implementations are from [55]. We
set their ping intervals as p = 5 seconds, which is aggressive and favors the baseline FDs. For all but
Static Timer, the timeout value T is a function of network characteristics and various parameters, which
we set to make the error, e, small (e is the fraction of ping intervals for which the FD declares a premature
timeout). We set φ-accrual for different e; in our experiments with no network delay, Chen and Bertier have
no observable error.

hence its detection time.

We configure Falcon with an end-to-end timeout of 5 minutes; Falcon can afford this large back-

stop because it detects common failures much faster. For a like-to-like comparison between the base-

lines (which are UFDs) and Falcon (which is an RFD), we also experiment with a UFD version of

Falcon called Falcon-NoKill, which is identical to Falcon except that it does not kill.

Each experiment holds constant the FD and the failure from the panel, and has 200 iterations. In

each iteration, we choose the failure time uniformly at random inside an FD’s periodic monitoring

interval of duration p (for the baselines, p is the ping interval and for Falcon it is 100 ms, per §4).

To produce a failure, a failure generator running at the FD client sends an RPC to one of the failure
servers that we deploy at different layers on the target.

For convenience, our experiments measure detection time at the FD client, as the elapsed time

from when the client sends the RPC to the failure server to when the FD declares the failure. This

approach adds one-way network delay to the measurement. However, we verified through separate
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Figure 11—Detection time of Falcon (F) and baseline failure detectors under various failures. The base-
lines are Static Timer (D), Chen (C), Bertier (B), φ-accrual with 0.01 error (P1), and φ-accrual with 0.001
error (P2); see Figure 10 for details. Rectangle heights depict medians, and the bars depict 1st and 99th
percentiles. The baseline FDs wait for multiple-second timers to fire. In contrast, Falcon has sub-second
detection time, owing to inside information and callbacks. Moreover, the comparison is pessimistic for
Falcon: with ping intervals that would mirror a real deployment, the baselines’ bars would be higher while
Falcon’s would not change.

experiments with synchronized clocks that the added delay is 2–3 orders of magnitude smaller than

the detection times.

Experiments and results. We measure the detection times of the baseline FDs and of Falcon-

NoKill, for a range of failures. Under constant network delay, we expect the baseline FDs’ detection

times to be uniformly distributed over [T − p + d, T + d];3 here, T and p are the timeout and ping

interval, as defined above and quantified in Figure 10, and d is the one-way network delay. We hy-

pothesize that Falcon’s detection times will be on the order of 100 ms, given spies’ periodic checks

(§4).

Figure 11 depicts the 1st, 50th, and 99th percentile detection times, under no network delay

(d = 0). The baselines behave as expected. For application crashes, Falcon’s median detection time

is larger than we had expected: 369 ms. The cause is the time taken by the Java Virtual Machine

(JVM) to shut down, which we verified to be several hundred milliseconds on average. For the failure

in which the app inspector reports LAYER_DOWN, Falcon’s median detection time is 75.5 ms. This

is in line with expectations: the app-enforcer polls the app inspector every Tapp-check = 100 ms, so we

expect an average detection time of 50 ms plus processing delays.

For the kernel hang, kernel overflow, and kernel panic failures, Falcon’s median detection times

are 204 ms, 197 ms, and 207 ms, respectively. The expected value here is 150 ms plus processing

delays: every TOS-check = 100 ms, the OS enforcer checks whether the prior interval saw OS activity

(§4), so the OS enforcer in expectation has to wait at least 50 ms (the duration from the failure until the

end of the prior interval) plus 100 ms (the time until the OS enforcer sees no activity). The processing

delays in our unoptimized implementation are higher than we would like: 15 ms per check, for a total

of 30 ms per failure, plus tens of milliseconds from supporting libraries and the client. Nevertheless,

these delays, plus the expected value of 150 ms, explain the observations.

For the guest exit and host crash failures, Falcon’s median detection times are 160 ms and

197 ms, respectively. For the guest exit, the observed detection time matches an expected 50 ms

(since TOS-check = 100 ms) plus cleanup by the VMM of 90 ms plus processing delays of tens of

milliseconds. Likewise, for the host crash, the observed detection time matches an expected 50 ms

(since TVMM-check = 100 ms) plus the 120 ms of waiting (see §4), plus processing delays.

Falcon’s detection time is an order of magnitude faster than that of the baseline FDs, for two rea-

sons. First, inside information reveals the crash soon after it happens; second, the spies call back the

client library when they detect a crash. With larger ping intervals p (which would be more realistic),

3The largest detection time occurs when the target fails just after replying to a ping; the client receives the
ping reply after d time and declares the failure at the next deadline after T time, for a detection time of
T + d. The smallest detection time occurs when the target fails just before replying to a ping; after d time
(when the ping reply would have arrived), the client waits for T − p time longer, then declares the failure,
for a detection time of T − p + d.
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Figure 12—Median response gap (unavailability) of ZooKeeper [31] with Falcon-NoKill (F) and unmod-
ified (Un) under injected failures at the leader. In unmodified ZooKeeper, followers quickly detect appli-
cation crashes but not kernel- or host/VMM-level crashes. Under the latter types, Falcon reduces median
ZooKeeper unavailability by roughly a factor of 6. In all cases, unavailability is several seconds on top of
detection time because of ZooKeeper’s recovery time.

the baselines’ detection times would be even worse.

Our depicted measurements, here and ahead, are under no network delay (roughly modeling an

uncongested network in a data center). However, we ran some of our experiments under injected

delays (d > 0) and found, as expected, that Falcon’s detection time increased by d. We did not

experiment with the baselines under network delay; our prediction of their detection times (distributed

over [T−p+d, T+d]) is stated above. We did not experiment under non-constant delay; based on their

algorithms, we predict that the baselines, except for Static Timer, would react to network variation by

increasing their timeout T . Falcon, meanwhile, would continue to detect crashes quickly, improving

its relative performance.

5.2 What is Falcon’s effect on availability?
We now consider the effect of improved detection time on system availability. We incorporate Falcon

into two Paxos-based [35] applications that use failure detectors based on static timers: ZooKeeper [31]

(ZK) and a replication library [44] (PMP). The modifications are straightforward: roughly 150 lines

of Java and 100 lines of C, respectively. We compare unavailability of these systems and their un-

modified versions, in the case of a leader crash.

To apply Falcon, we use the spy for ZooKeeper, as described in Section 4, and a PMP spy that

checks whether the main event loop is running; in both cases, we use Falcon-NoKill, as both sys-

tems’ unmodified failure detectors are unreliable. The unmodified ZK detects a crashed leader either

via a ten-second timeout or if the leader’s host closes the transport session with the followers. The

unmodified PMP runs with its default of a ten-second timeout.

We configure ZK to use 4 nodes: 3 servers and 1 client (our testbed has 3 hosts, so the client

and a server run on the same VMM). ZK partitions the servers into 1 leader and 2 followers. The ZK

client sends requests to one of the followers (alternating ��������s and ��	�����s) when it gets

a response to its last one, recording the time of every response. For each of three failure types and

the two ZKs, we perform 10 runs. In each run, we inject a failure into the leader at a time selected

uniformly at random between 3 and 4 seconds after the run begins. The result is a gap in the response

times. Example runs look like this:

ZK + Falcon

ZK (unmodified)

kernel hang

 0  5  10  15

time (sec)

Figure 12 depicts the durations of those response gaps. Under application failures, ZK reacts

relatively quickly because the follower explicitly loses its transport session with the leader. Though

the median of ZK+Falcon is 350 ms slower than with unmodified ZK, this difference appears due



failure action taken by Falcon

app crash app enforcer detects failure
app layer-down report app enforcer kills application
app inspector hangs app enforcer kills application

kernel hang OS enforcer kills guest OS
kernel stack overflow OS enforcer kills guest OS
kernel panic OS enforcer kills guest OS

VMM error / guest exit OS enforcer detects failure
host down VMM enforcer kills VMM/host

crashed app enforcer + app crash E2E timeout kills guest OS
crashed incrementer OS enforcer kills guest OS
crashed OS enforcer + OS crash E2E timeout kills VMM/host
crashed VMM inspector VMM enforcer kills VMM/host

transient condition action taken by Falcon

hung system call none
CPU contention within guest none
CPU contention across guests none

memory contention within guest none
memory contention across guests OS enforcer kills guest OS
packet flood between guests none
packet flood between VMMs VMM enforcer kills VMM/host

Figure 13—Falcon’s actions under the failure panel and transient condition panel. (Falcon-specific failures
are augmented with target failures because otherwise the Falcon failure has no effect.) Under the failures,
Falcon kills surgically while STONITH, for example, would kill more coarsely. Under the transient condi-
tions, Falcon correctly holds its fire in most cases but sometimes suspects falsely and thus kills.

to experimental variation (ZK+Falcon also experiences transport session loss, and the standard de-

viations are 566 ms for ZK+Falcon and 762 ms for unmodified ZK). Under kernel and VMM/host

failures, the ZK follower receives no word that the system is leaderless, so it infers failure—and ini-

tiates leader election—only after not having heard from the leader for 10 seconds. Under all failures,

Falcon’s detection time is sub-second. However, unavailability is detection time plus recovery time,

and in all of the depicted cases, recovery takes roughly 2 seconds: the ZK follower, in connecting to

the new leader, usually requires two attempts separated by one second, and the client also has a retry

discipline that imposes delays of one second or more.

We run analogous experiments for PMP, and the results are similar: tens of seconds of unavail-

ability without Falcon and less than one second with Falcon.

5.3 How disruptive is Falcon?
We now ask whether Falcon achieves its goal of little disruption, which has two aspects: (1) If Falcon

must kill, it should kill the smallest possible component, and (2) Falcon should not kill if not required

(e.g., if the target is momentarily slow); that is, Falcon should avoid false suspicions. To evaluate

these aspects, we run Falcon against our two panels, failures and transient conditions, reporting the

component killed, if any. Figure 13 tabulates the results.

For aspect (1), Falcon’s reactions to the injected failures match our expectations. If the failure is

in the target, Falcon detects it and, if needed, kills the smallest component of the target. If, however,

the failure is in Falcon itself (the last four injected failures), then there are two cases. Either Falcon

falls back on the end-to-end timeout, killing the layer at which the spy failure occurred, or else Falcon

interprets the spy’s failure as a layer failure and kills the layer quickly (e.g., as mentioned in Section 4,

Falcon treats an incrementer crash as an OS crash). Falcon’s surgical approach to reliability should be

contrasted with STONITH, which kills the entire machine (though some implementations can target

the virtual machine [5]).

For aspect (2), we apply the panel of transient conditions, listed in the bottom part of Figure 13.



CPU overhead (percent of a core’s cycles)

component (§4) app uses no CPU app uses 90% CPU

app inspector 0.06 0.04
app enforcer 0.11 0.07
incrementer 0.58 0.31
VM total 0.75% 0.42%

OS enforcer (main) 0.01 0.01
OS enforcer (worker) 0.04 0.03
�������� 0.91 0.95
QEMU 6.92 1.79
VMM inspector 0.39 0.27
VMM total 8.27% 3.07%

VMM enforcer 0.00 0.00
switch total 0.00% 0.00%

Figure 14—Background CPU overhead of our Falcon implementation, under an idle dummy application
and under one that consumes 90% of its CPU. Each enforcer performs a local check 10 times per second.
The switch’s CPU overhead is less than one part in 10,000 so displays as 0. QEMU’s contribution to the
overhead is explained in the text.

We expected Falcon to hold its fire in all of these cases, but there are two for which it does not. First,

when guests contend for memory, the VMM (Linux) swaps QEMU processes that contain guests,

to the point where there are intervals of duration TOS-check when some guests—and their embedded

incrementers—do not run, causing the OS enforcer to kill. An improved OS enforcer would incor-

porate further inside information, not penalizing a guest in cases when the guest is ready to run but

starved for cycles. Second, when the network is heavily loaded, the communication channel between

VMM enforcer and VMM inspector degrades, causing the VMM enforcer sometimes (in 4 out of 15

of our runs) to infer death and kill. As mentioned in Section 4, a better design would set NVMM-retry

adaptively. In the other cases, Falcon’s inside information prevents it from killing. For example, the

app-enforcer measures Tapp-resp based on CPU time (§4), so a long block (e.g., the “hung system call”

row) does not cause a kill.

5.4 What are Falcon’s computational costs?
Falcon’s benefits derive from infiltrating the layers of a system. Such platform-specific logic incurs

computational costs and programmer effort. We address the former in this section and the latter in the

next one.

Falcon’s main computational cost is CPU time to execute periodic local checks (described in Sec-

tion 4). To assess this overhead we run a Falcon-enabled target with an idle dummy application for

15 minutes, inducing no failures. We then run the same target and application but with the Falcon

components disabled (and with QEMU and �������� enabled). In both cases, we measure the accu-

mulated CPU time over the run, reporting the CPU overhead of Falcon as the difference between the

accumulated CPU times divided by the run length.

Figure 14 tabulates the results. For the most part, Falcon’s CPU overhead is small (less than 1%

per component). The exception is the QEMU process in the VMM layer. Two factors contribute to

this overhead. First, the Falcon-enabled virtual machine is scheduled more frequently than the Falcon-

disabled virtual machine (because of Falcon’s multiple checks per second in the former case versus an

idle application in the latter case). To control for this effect, we perform the same experiment above,

except that we run another application, alongside the dummy, that uses 90% of the CPU. Under these

conditions, as depicted in Figure 14, QEMU contributes only 1.8% overhead in the Falcon-enabled

case. Second, the remaining overhead is from QEMU’s reading guest virtual memory inefficiently

(when requested by the OS enforcer; see §4). We verified this by separately running the experiment

above (Falcon enabled, 90% CPU usage by the dummy application) except that memory reads by the

OS enforcer were disabled. The difference in QEMU’s CPU usage was 1.4%, explaining nearly all of



module (§4) spy component (§4) lines of code

platform-independent modules
thread in app; glue (C++) app inspector 101
thread in app; glue (Java) app inspector 241
shared enforcer code all enforcers 465
client library client library 1287
client library glue (Java) client library 310
platform-independent total 2404

platform-specfic modules
app-enforcer process app enforcer 403
incrementer OS inspector 43
kernel module OS inspector 39
������� extensions OS enforcer 606
OS enforcer (main) OS enforcer 509
OS enforcer (worker) OS enforcer 83
�������� extensions OS enforcer 53
RPC module VMM inspector 103
DD-WRT extension VMM enforcer 450
platform-specific total 2289

application-specific modules
�	
 for Paxos (from [44]) app inspector 17
�	
 for primary-backup app inspector 42
�	
 for ZooKeeper [31] app inspector 159

Figure 15—The modules in our Falcon implementation and their lines of code. The platform-independent
modules assume a POSIX system.

the CPU usage difference between the Falcon-enabled and Falcon-disabled cases.

To mitigate the overhead of QEMU’s guest memory reads, we could increase TOS-check (which

would reduce the number of checks but increase detection time) or improve the currently unoptimized

implementation of guest memory reads.

5.5 What is the code and complexity trade-off?
Although we can use Falcon in legacy software (as in §5.2, where the gain was availability), Falcon

provides an additional benefit to the applications that use it: shedding complexity. However, this is not

“moving code around”: the platform-specific logic required by Falcon has a simple function (detect

a crashed layer and kill it if necessary) while the logic shed in applications is complex (tolerate

mistakes in an unreliable failure detector).

Figure 15 tabulates the lines of code in our implementation, according to [54]. (We do not count

external libraries in our implementation: ������� for RPC functions, ��	� for JSON functions,

and ��

���� for functions on the switch.) The platform-specific total is fewer than 2300 lines.

The application-specific code is much smaller, for our sample implementations of ��� (though a

production application might wish to embed more intelligence in its ���).

Next, we assess the gain to applications that use failure detectors (FDs). Examples of such appli-

cations are ZooKeeper, Chubby, state machine replication libraries, and systems that use end-to-end

timeouts based on pings of remote hosts.4 As noted in Section 2.2, if the FD is a UFD, then the appli-

cation needs complex algorithms that can handle FD mistakes; for example, it might use Paxos [35]

for replication. However, if the application has access to an RFD (as provided by Falcon), then it

can use simpler approaches; for example it can use primary-backup [9] for replication. Measuring

simplicity is difficult, but we compare the lines of code in (1) PMP, which uses a static timer as an

FD and Paxos for replication (see §5.2), and (2) a replication library that we implemented, which

4A non-example is an application that uses ZooKeeper, Chubby, or another higher-level service that itself
incorporates FDs. In these cases, the simplicity benefit of Falcon accrues to the higher-level service, not
its user. We discuss ZooKeeper and Chubby further in Section 7.



replication approach lines of code # replicas/witnesses

Paxos (from [44]) 1759 3
Primary-backup 1388 2

Figure 16—Comparison of two different approaches to replicating state machines: Paxos [35], as imple-
mented in [44], and primary-backup [9], as implemented by us. The Paxos row excludes FD code and
generated RPCs. The primary-backup approach is fewer lines of code because it is simpler: it does not
tolerate unreliable failure detection. Primary-backup also has 50% lower replication overhead in the usual
case.

uses Falcon as an FD and primary-backup for replication. To make the comparison like-to-like, we

exclude PMP’s FD code from the count.

Figure 16 lists the numbers, again according to [54]. The difference is only 371 lines, but this

is 21% of the original code base. And the percentage may be deceptively low: using Paxos in a real

system can require intricate engineering [18] whereas primary-backup deployments are not known to

suffer similarly. Moreover, primary-backup has lower replication overhead than Paxos: to tolerate a

crash, Paxos requires three replicas (or two replicas and a witness), while primary-backup requires

just two replicas.

Assessing Falcon’s reliability. The simplification results only if Falcon is truly reliable, meaning

that it reports DOWN only if the target is down. Falcon’s spies are carefully designed and implemented

not to violate this property, and in our experience, Falcon has never reported an up target as DOWN.

However, we cannot fully guarantee reliability without formally verifying our implementation.

6 DISCUSSION, EXTENSIONS, AND OUTLOOK
This section discusses how Falcon relates to the conventional wisdom that RFDs cannot be built

(§6.1), why we favored Falcon over alternatives (§6.2), how one might apply Falcon to other systems

(§6.3), what we see as future work (§6.4), and how Falcon might affect distributed systems more

broadly (§6.5).

6.1 Is the conventional wisdom wrong?
The conventional wisdom holds that a viable fast RFD cannot be built, except with specialized hard-

ware. So how did we build Falcon? We explain the arguments for this wisdom by both practitioners

and theoreticians, and how Falcon overcomes them.

Practitioners argue that there is an inherent trade-off between detection time and either accuracy

or little disruption (§2.2). This trade-off also applies to Falcon: for instance, by reducing the local

timeouts of spies, we can get even faster detection and more frequent killing. However, by using

inside information, Falcon shifts the trade-off curve to a point where it becomes almost insignificant:

even when Falcon is configured to be relatively unaggressive, it often has very fast detection time

(§5.1).

Theoreticians argue that RFDs cannot be implemented in asynchronous systems subject to fail-

ures because RFDs can be used to solve consensus, and consensus is impossible in such systems [28].5

Falcon does not contradict this: the theoretical result holds in a model in which processes cannot infer

crashes, and part of our point is that processes can infer crashes, using inside information. Further-

more, real systems are not asynchronous—a point that we and others have made before [8]. Of course,

a system can sometimes experience large delays, thereby behaving like an asynchronous system; this

causes Falcon to block temporarily, but that may be tolerable (§3.5).

6.2 Alternatives to Falcon
Falcon has two backstops: an end-to-end timeout, to catch unexpected conditions, and a chained spy

structure, where the spy on a layer monitors the spy on the next layer, to catch the death of spies

themselves. An alternate design would be to eliminate the chained structure by not insisting that

5Even in partially synchronous systems [26], where consensus can be solved, one can prove that RFDs
cannot be implemented [38].



spies be monitored: there would be a set of ad-hoc spies, each tuned to a particular vulnerability. We

did not pursue this design because a problem that both crashed a spy and triggered the vulnerability

monitored by the spy would not be detected until the end-to-end timeout expired. Falcon, in contrast,

can often detect this case quickly.

Falcon uses local timeouts within each layer. One might wonder if the local timeouts could be

replaced with an end-to-end timeout that is the minimum or the sum of the local timeouts. The answer

is no: with the minimum, there would be more frequent killing, and with the sum, the detection time

would be much larger. In fact, even with the sum, there would be more frequent killing relative

to Falcon: spies can avoid killing based on internal signs of life that are not visible end-to-end.

One might wonder how this observation relates to the end-to-end argument [47]. The end-to-end

argument states that functionality should be implemented at the end hosts (the highest layers), when

it is possible to do so completely and correctly. In our context, however, the desired functionality—

detecting failures quickly and reliably—can be provided only by infiltrating the layers.

Another design alternative concerns the handling of intermittent failures, such as temporary slow-

ness of the target. We designed Falcon to avoid reporting an intermittent failure as a crash whenever

possible, but an alternative is to conflate both problems. We eschewed that design for three reasons.

First, clients may want to distinguish a crash from an intermittent failure, because the former requires

recovery with non-zero cost, while the latter is self-healing. Second, to report an intermittent failure

as a crash, an RFD must kill, causing possibly unnecessary disruption. Third, by using Falcon and

a timer, a client can infer an intermittent failure, by observing that the target is unresponsive while

Falcon deems it operational. However, a service that reports where the intermittent failure is, without

calling it a crash, might be useful and would be an instance of an FD with richer failure indication

(§6.4).

6.3 Applying Falcon to different platforms
Although Falcon’s implementation targets a particular platform, we think that its overall design is

general. With a different platform, Falcon needs to be tailored for two reasons. (1) The layers may be

different: the platform may or may not have VMs, nested VMs [10], Java Virtual Machines (JVMs),

etc. (2) A layer may have a different instantiation: the OS layer could be Windows instead of Linux,

the VMM could be VMware instead of Linux with QEMU/KVM, etc.

We believe that we can keep small the tailoring from (1). The key is to standardize the com-

munication between enforcer and inspectors, which would let us build different spy networks with

minimal changes to the spies. With standardization, we could handle the case of no VMM by moving

the OS enforcer to the network driver and leaving the OS inspector unchanged. Or we could insert

into the JVM layer a JVM inspector and an enforcer for Java applications and leave unchanged the

current app enforcer and app inspectors.

Reason (2), in contrast, requires reimplementing spies. However, because there are few OSs and

VMMs, a small number of OS and VMM spies could cover most platforms. And while the application

and network spy need to be implemented for each target, this cost is modest (see Section 5.5 for counts

of lines of code).

Falcon is only as good as its spies, so how can a developer design useful new spies? Here are

three guidelines. First and foremost, do not kill aggressively. Even if the spy monitors few conditions,

if it does not kill aggressively, Falcon will fare better than an FD based on end-to-end timeouts alone

because Falcon detects the failures monitored by the spy quickly and other failures as fast as the end-

to-end timeout. Second, optimize for monitoring the common failures because therein lies the most

benefit. Third, design the spy as an iterative process, as the common failures may be unknown at first.

That is, the designer should first develop and deploy a simple spy based on some rough knowledge of

failures; then observe that the spy fails to detect some common problem quickly (in which case the

end-to-end timeout fires); then enhance the spy, redeploy it, and iterate until it catches all common

problems. We used this process to design some of the spies in Section 4.



6.4 Future work
Richer failure indication. When a crash occurs, Falcon outputs a simple failure indication, but its

spy network has much more information: which layer failed and what problem was observed in that

layer. It would be useful to extend the FD interface to expose this data to help applications recover.

Monitoring across data centers. We have been assuming that the client library and the target are

in the same physical data center. If they are in separate data centers but in the same administrative

domain, our implementation still works, with the proviso that Falcon would block more often, since

blocking happens if the client library cannot communicate with the target’s switch (§3.5,§4). If they

are in different administrative domains, Falcon would need to incorporate access control and permis-

sions.

Scalable monitoring. Our focus has been one process monitoring another, but Falcon also works

if n > 1 processes monitor each other. However, there will be O(n2) monitoring pairs, which should

give us pause. Nevertheless, the actual resources consumed can be made efficient. When a layer fails,

the detecting spy sends only O(n) LAYER_DOWN reports. To avoid O(n2) messages during healthy

times, one option is to eliminate LAYER_UP reports; another is to extend Falcon with techniques such

as gossiping [50].

Targets with multiple network interfaces. Falcon currently assumes that the target’s host is con-

nected to a single switch, so that the VMM enforcer can kill the VMM by disabling the port of the

target’s host on the switch. If the target’s host is connected to multiple switches, we need to deploy a

VMM enforcer at each switch to disconnect all the ports of the target’s host.

Network failure localization. Ultimately, we would like to extend Falcon’s spy network downward,

into the network, to enable failure localization. While one can imagine deploying spies on switches

en route from client library to target, this approach raises complex questions related to the algorithms

for detection, the approach to remediation (killing will not be viable in many scenarios), and the

model for access control and administration.

6.5 Outlook
We finish by considering Falcon’s potential effect on distributed systems, based on our expectations,

postulations, and speculations.

The key features of Falcon are faster detection and reliability. With faster detection, Falcon may

change distributed systems in four ways. First, it can improve availability by removing the periods

when the system freezes for several seconds waiting for an end-to-end timeout to expire. Second,

because detection is faster, the system has extra time to recover, so it can try multiple recovery strate-

gies. For example, there may be enough time to restart and retry the failed component before taking

the more drastic failover action. Third, with extra time to recover, the system could spend fewer re-

sources during normal operation. For example, there may be no need to keep a warm backup or to

checkpoint the state as often. Fourth, the system can afford more frequent failures while maintaining

the same availability, which allows for cheaper components and less redundancy.

Besides fast detection, Falcon provides reliable detection, which could simplify the design of

some distributed systems and algorithms—a point discussed in Sections 2.2 and 5.5 and which we

now briefly elaborate. There are many abstractions to help build distributed systems including atomic

registers, atomic broadcast, leader election, group membership, view synchrony, and transactions.

However, these abstractions bring difficulty: materializing them has required much thought and work

in both theory and practice. The difficulty arises because distributed systems have many sources of un-

certainty: failures, slow messages and processes, concurrency, etc. Falcon does not remove all sources

of uncertainty, but in its target domain—crash failures in data centers and enterprise networks—it

eliminates a vexing one: the ambiguity between slowness and failures.

7 RELATED WORK
Before describing other approaches to failure detection, we give context. A formal theory of failure

detectors, including definitions for several classes of FDs (reliable, different kinds of unreliable, etc.),



was given by Chandra and Toueg [19]. That work established that, with RFDs (as opposed to UFDs),

simpler solutions for consensus and atomic (totally-ordered) broadcast were possible. Subsequently,

the theoretical advantages of fast RFDs were established [7]. Despite this body of theory, it was not

known how to build an inexpensive failure detector that is reliable, fast, and minimally disruptive, so

we organize related work in terms of the trade-offs among these characteristics.

We begin with unreliable FDs. Chen et al. [21] propose a failure detector based on freshness

points and end-to-end timeouts, where the value is chosen adaptively based on delay and loss mea-

surements. Such end-to-end timeouts could be set using other techniques too [11]. These approaches

provide a binary indication of failure. Accrual failure detectors [30], in contrast, output a numerical

value such that, roughly, the higher the value, the higher the chance that the process has crashed.

In practice, applications consider the output to be an indication of failure if it is above a certain

threshold. There has also been a strand of work on scaling the failure detector to a large number

of processes, with gossiping [50]. This approach also uses end-to-end timeouts, again resulting in

a UFD. Each of the above UFDs must trade detection time and accuracy, and none yields an RFD:

end-to-end timeouts can be premature, and the guarantees of accrual FDs are probabilistic.

To realize an affordable RFD, one could augment any of the unreliable FDs above by backing up

suspicion of failure with killing. In that case, the tradeoff becomes fast detection versus disruption,

as what used to be false FD suspicions become needless kills. Such reliable failure detectors can be

implemented using watchdogs [27], where the watchdog resets the machine based on an end-to-end

timeout. Likewise, the Linux-HA project [6] provides a service called Heartbeat, which provides

a failure detection service based on end-to-end timeouts and can be configured to use a hardware

watchdog, or STONITH of real or virtual machines. Similarly, with virtual synchrony [12] there is a

notion of a process group (which corresponds to the set of operational processes), and if a process

becomes very slow, it is excluded from the group via an end-to-end timeout, which is akin to killing.

In contrast to all of these approaches, Falcon provides surgical killing and uses fine-grained inside

information to detect failures faster than an end-to-end timeout would allow.

Surgical killing and fine-grained monitoring have appeared before but in different contexts. Can-

dea et al. [16] articulated the benefits of surgical killing (faster recovery time, less disruption), and we

concur. However, that work focuses on the application layer only, and it solves an orthogonal problem

to detection, namely recovery. Fine-grained information is used in cluster monitoring, which collects

information about the current condition of hosts in a cluster (e.g., [2–4]), possibly using application-

specific data (load, queue lengths, etc.). In contrast to Falcon, these services peek inside only one

layer (the application), monitor machines using an end-to-end timeout, and do not have a license to

kill (which is needed to get an RFD). Fine-grained information is also used in the leader election

service of [48], which enhances a timeout-based failure detector by suspecting a target if its pipe to a

local module is broken. Here too, the fine-grained information is limited to one layer, and the failure

detector does not kill.

A technique that does involve killing, which is used to increase the availability of Web servers

and other services, is to deploy a local script that periodically checks if the application process is

running. If not, or if the process has erratic behavior (such as very high CPU usage), the script restarts

the application, killing it first if necessary. This technique is limited to one layer (nothing monitors

the script) and does not report the failure status to a remote process.

A system that can provide information about failures is ZooKeeper [31], a service for configu-

ration management, naming, and group membership. Its ephemeral objects—objects that disappear

when the creator is deemed to have crashed—allow other clients to detect the creator’s failure status.

However, to implement these objects, ZooKeeper internally needs a bona fide failure detector. It uses

a UFD (§2.2) for this purpose, so its ephemeral objects provide unreliable detection. However, we

replaced its UFD here with Falcon, and though we did not experiment much in this configuration, the

change makes ephemeral objects reliable and fast.

Another distributed systems building block is Chubby [14], a lock service with named objects,

sessions, and other features. Chubby can address some of the problems that Falcon does. For example,

Chubby can avoid two active primaries in some applications. This is done with locks: the primary

owns a lock and has a session with Chubby. If the primary fails, Chubby releases the lock only after



the primary has lost its session. For this purpose, Chubby uses large end-to-end timeouts and complex

session management logic; if incorporated into Chubby, Falcon could replace the former and simplify

the latter.

Other production services could also replace their failure detectors, which are based on end-to-

end timeouts, with Falcon. For example, GFS [29] uses a timeout of 60 seconds for the primary of

a chunk. BigTable [20] uses end-to-end timeouts for sessions with Chubby; it also uses timeouts

to expire tablet servers. Dynamo [25] uses end-to-end timeouts in its gossip protocol and between

communicating nodes.

8 SUMMARY AND CONCLUSION
We began by observing that tolerating crashes requires not only recovering from them—a problem

that has been extensively studied—but also detecting them in the first place, a problem that has

received comparatively less attention. This problem brings challenges, whose ultimate cause is the

difficulty of quickly and accurately classifying what is truly happening at a remote target. To lift the

fog of war, Falcon infiltrates the layers of a remote system with spies, chains spies into a spy network,

and combines these with existing techniques (reliability by killing, end-to-end timeouts as a backstop,

etc.). To us, the most interesting aspect of Falcon is not any of its individual techniques but rather

that it composes them into a system that achieves—as an ad-hoc design would not, judging by our

own discarded designs and revised reasoning—sub-second detection, reliability, little disruption, and

tolerable expense. This combination is the key contribution of Falcon, and having made it, Falcon

now has the chance, we hope, to yield broader benefits: distributed systems that for the user are more

responsive and for the designer are more tractable.

Our implementation and experimental configurations are available at:
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