
Differentiated Storage Services

Michael Mesnier, Jason B. Akers, Feng Chen, Tian Luo
∗

Intel Corporation
Hillsboro, OR

ABSTRACT
We propose an I/O classification architecture to close the widening semantic gap between
computer systems and storage systems. By classifying I/O, a computer system can request
that different classes of data be handled with different storage system policies. Specifically,
when a storage system is first initialized, we assign performance policies to predefined
classes, such as the filesystem journal. Then, online, we include a classifier with each I/O
command (e.g., SCSI), thereby allowing the storage system to enforce the associated policy
for each I/O that it receives.

Our immediate application is caching. We present filesystem prototypes and a database
proof-of-concept that classify all disk I/O — with very little modification to the filesystem,
database, and operating system. We associate caching policies with various classes (e.g.,
large files shall be evicted before metadata and small files), and we show that end-to-end
file system performance can be improved by over a factor of two, relative to conventional
caches like LRU. And caching is simply one of many possible applications. As part of our
ongoing work, we are exploring other classes, policies and storage system mechanisms that
can be used to improve end-to-end performance, reliability and security.

Categories and Subject Descriptors
D.4 [Operating Systems]; D.4.2 [Storage Management]: [Storage hierarchies]; D.4.3
[File Systems Management]: [File organization]; H.2 [Database Management]

General Terms
Classification, quality of service, caching, solid-state storage
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Figure 1: High-level architecture

1. INTRODUCTION
The block-based storage interface is arguably the most stable interface in computer systems
today. Indeed, the primary read/write functionality is quite similar to that used by the
first commercial disk drive (IBM RAMAC, 1956). Such stability has allowed computer and
storage systems to evolve in an independent yet interoperable manner, but at at a cost
– it is difficult for computer systems to optimize for increasingly complex storage system
internals, and storage systems do not have the semantic information (e.g., on-disk FS and
DB data structures) to optimize independently.

By way of analogy, shipping companies have long recognized that classification is the key to
providing differentiated service. Boxes are often classified (kitchen, living room, garage),
assigned different policies (deliver-first, overnight, priority, handle-with-care), and thusly
treated differently by a shipper (hand-carry, locked van, truck). Separating classification
from policy allows customers to pack and classify (label) their boxes once; the handling
policies can be assigned on demand, depending on the shipper. And separating policy from
mechanism frees customers from managing the internal affairs of the shipper, like which
pallets to place their shipments on.

In contrast, modern computer systems expend considerable effort attempting to manage
storage system internals, because different classes of data often need different levels of
service. As examples, the “middle” of a disk can be used to reduce seek latency, and the
“outer tracks” can be used to improve transfer speeds. But, with the increasing complexity
of storage systems, these techniques are losing their effectiveness — and storage systems
can do very little to help because they lack the semantic information to do so.

We argue that computer and storage systems should operate in the same manner as the
shipping industry — by utilizing I/O classification. In turn, this will enable storage systems
to enforce per-class QoS policies. See Figure 1.

Differentiated Storage Services is such a classification framework: I/O is classified in the
computer system (e.g., filesystem journal, directory, small file, database log, index, ...),
policies are associated with classes (e.g., an FS journal requires low-latency writes, and a
database index requires low-latency reads), and mechanisms in the storage system enforce
policies (e.g., a cache provides low latency).

Our approach only slightly modifies the existing block interface, so eventual standardiza-
tion and widespread adoption are practical. Specifically, we modify the OS block layer so
that every I/O request carries a classifier. We copy this classifier into the I/O command
(e.g., SCSI CDB), and we specify policies on classes through the management interface of
the storage system. In this way, a storage system can provide block-level differentiated
services (performance, reliability, or security) — and do so on a class-by-class basis. The



Vendor A: Vendor B: Vendor C:
FS Class Service levels Perf. targets Priorities
Metadata Platinum Low lat. 0
Journal Gold Low lat. 0

Small file Silver Low lat. 1
Large file Bronze High BW 2

Table 1: An example showing FS classes mapped to various performance poli-
cies. This paper focuses on priorities; lower numbers are higher priority.

storage system does not need any knowledge of computer system internals, nor does the
computer system need knowledge of storage system internals.

Classifiers describe what the data is, and policies describe how the data is to be managed.
Classifiers are handles that the computer system can use to assign policies and, in our
SCSI-based prototypes, a classifier is just a number used to distinguish various filesystem
classes, like metadata versus data. We also have user-definable classes that, for example, a
database can use to classify I/O to specific database structures like an index. Defining the
classes (the classification scheme) should be an infrequent operation that happens once for
each filesystem or database of interest.

In contrast, we expect that policies will vary across storage systems, and that vendors
will differentiate themselves through the policies they offer. As examples, storage sys-
tem vendors may offer service levels (platinum, gold, silver, bronze), performance levels
(bandwidth and latency targets), or relative priority levels (the approach we take in this
paper). A computer system must map its classes to the appropriate set of policies, and
I/O classification provides a convenient way to do this dynamically when a filesystem or
database is created on a new storage system. Table 1 shows a hypothetical mapping of
filesystem classes to available performance policies, for three different storage systems.

Beyond performance, there could be numerous other policies that one might associate with
a given class, such as replication levels, encryption and integrity policies, perhaps even
data retention policies (e.g., secure erase). Rather than attempt to send all of this policy
information along with each I/O, we simply send a classifier. This will make efficient use
of the limited space in an I/O command (e.g., SCSI has 5 bits that we use as a classifier).
In the storage system the classifier can be associated with any number of policies.

We begin with a priority-based performance policy for cache management, specifically for
non-volatile caches composed of solid-state drives (SSDs). That is, to each FS and DB
class we assign a caching policy (a relative priority level). In practice, we assume that the
filesystem or database vendor, perhaps in partnership with the storage system vendor, will
provide a default priority assignment that a system administrator may choose to tune.

We present prototypes for Linux Ext3 and Windows NTFS, where I/O is classified as
metadata, journal, directory, or file, and file I/O is further classified by the file size (e.g.,
≤4KB ≤16KB, ..., >1GB). We assign a caching priority to each class: metadata, journal,
and directory blocks are highest priority, followed by regular file data. For the regular files,
we give small files higher priority than large ones.

These priority assignments reflect our goal of reserving cache space for metadata and small
files. To this end, we introduce two new block-level caching algorithms: selective allocation

and selective eviction. Selective allocation uses the priority information when allocating
I/O in a cache, and selective eviction uses this same information during eviction. The
end-to-end performance improvements of selective caching are considerable. Relative to



conventional LRU caching, we improve the performance of a file server by 1.8x, an e-
mail server by 2x, and metadata-intensive FS utilities (e.g., find and fsck) by up to 6x.
Furthermore, a TCO analysis by Intel IT Research shows that priority-based caching can
reduce caching costs by up to 50%, as measured by the acquisition cost of hard drives and
SSDs.

It is important to note that in both of our FS prototypes, we do not change which logical
blocks are being accessed; we simply classify I/O requests. Our design philosophy is that
the computer system continues to see a single logical volume and that the I/O into that
volume be classified. In this sense, classes can be considered “hints” to the storage system.
Storage systems that know how to interpret the hints can optimize accordingly, otherwise
they can be ignored. This makes the solution backward compatible, and therefore suitable
for legacy applications.

To further show the flexibility of our approach, we present a proof-of-concept classification
scheme for PostgreSQL [33]. Database developers have long recognized the need for in-
telligent buffer management in the database [10] and in the operating system [45]; buffers
are often classified by type (e.g., index vs. table) and access pattern (e.g., random vs. se-
quential). To share this knowledge with the storage system, we propose a POSIX file flag
(O_CLASSIFIED). When a file is opened with this flag, the OS extracts classification infor-
mation from a user-provided data buffer that is sent with each I/O request and, in turn,
binds the classifier to the outgoing I/O command. Using this interface, we can easily clas-
sify all DB I/O, with only minor modification to the DB and the OS. This same interface
can be used by any application. Application-level classes will share the classification space
with the filesystem — some of the classifier bits can be reserved for applications, and the
rest for the filesystem.

This paper is organized as follows. Section 2 motivates the need for Differentiated Storage
Services, highlighting the shortcomings of the block interface and building a case for block-
level differentiation. Alternative designs, not based on I/O classification, are discussed. We
present our design in Section 3, our FS prototypes and DB proof-of-concept in Section 4,
and our evaluation in Section 5. Related work is presented in Section 6, and we conclude
in Section 7.

2. BACKGROUND & MOTIVATION
The contemporary challenge motivating Differentiated Storage Services is the integration
of SSDs, as caches, into conventional disk-based storage systems. The fundamental limi-
tation imposed by the block layer (lack of semantic information) is what makes effective
integration so challenging. Specifically, the block layer abstracts computer systems from
the details of the underlying storage system, and vice versa.

2.1 Computer system challenges
Computer system performance is often determined by the underlying storage system, so
filesystems and databases must be smart in how they allocate on-disk data structures. As
examples, the journal (or log) is often allocated in the middle of a disk drive to minimize
the average seek distance [37], files are often created close to their parent directories, and
file and directory data are allocated contiguously whenever possible. These are all attempts
by a computer system to obtain some form differentiated service through intelligent block
allocation.

Unfortunately, the increasing complexity of storage systems is making intelligent allocation
difficult. Where is the “middle” of the disk, for example, when a filesystem is mounted
atop a logical volume with multiple devices, or perhaps a hybrid disk drive composed
of NAND and shingled magnetic recording? Or, how do storage system caches influence



the latency of individual read/write operations, and how can computer systems reliably
manage performance in the context of these caches? One could use models [27, 49, 52] to
predict performance, but if the predicted performance is undesirable there is very little a
computer system can do to change it.

In general, computer systems have come to expect only best-effort performance from their
storage systems. In cases where performance must be guaranteed, dedicated and over-
provisioned solutions are deployed.

2.2 Storage system challenges
Storage systems already offer differentiated service, but only at a coarse granularity (logical
volumes). Through the management interface of the storage system, administrators can
create logical volumes with the desired capacity, reliability, and performance characteristics
— by appropriately configuring RAID and caching.

However, before an I/O enters the storage system, valuable semantic information is stripped
away at the OS block layer, such as user, group, application, and process information.
And, any information regarding on-disk structures is obfuscated. This means that all I/O
receives the same treatment within the logical volume.

For a storage system to provide any meaningful optimization within a volume, it must have
semantic computer system information. Without help from the computer system, this can
be very difficult to get. Consider, for example, that a filename could influence how a file is
cached [26], and what would be required for a storage system to simply determine the the
name of a file associated with a particular I/O. Not only would the storage system need to
understand the on-disk metadata structures of the filesystem, particularly the format of
directories and their filenames, but it would have to track all I/O requests that modify these
structures. This would be an extremely difficult and potentially fragile process. Expecting
storage systems to retain sufficient and up-to-date knowledge of the on-disk structures for
each of its attached computer systems may not be practical, or even possible, to realize in
practice.

2.3 Attempted solutions & shortcomings
Three schools of thought have emerged to better optimize the I/O between a computer
and storage system. Some show that computer systems can obtain more knowledge of
storage system internals and use this information to guide block allocation [11, 38]. In
some cases, this means managing different storage volumes [36], often foregoing storage
system services like RAID and caching. Others show that storage systems can discover
more about on-disk data structures and optimize I/O accesses to these structures [9, 41,
42, 43]. Still others show that the I/O interface can evolve and become more expressive;
object-based storage and type-safe disks fall into this category [28, 40, 58].

Unfortunately, none of these approaches has gained significant traction in the industry.
First, increasing storage system complexity is making it difficult for computer systems to
reliably gather information about internal storage structure. Second, increasing computer
system complexity (e.g., virtualization, new filesystems) is creating a moving target for
semantically-aware storage systems that learn about on-disk data structures. And third,
although a more expressive interface could address many of these issues, our industry has
developed around a block-based interface, for better or for worse. In particular, filesystem
and database vendors have a considerable amount of intellectual property in how blocks
are managed and would prefer to keep this functionality in software, rather than offload
to the storage system through a new interface.

When a new technology like solid-state storage emerges, computer system vendors prefer



to innovate above the block level, and storage system vendors below. But, this tug-of-war
has no winner as far as applications are concerned, because considerable optimization is
left on the table.

We believe that a new approach is needed. Rather than teach computer systems about
storage system internals, or vice versa, we can have them agree on shared, block-level
goals — and do so through the existing storage interfaces (SCSI and ATA). This will not
introduce a disruptive change in the computer and storage systems ecosystem, thereby
allowing computer system vendors to innovate above the block level, and storage system
vendors below. To accomplish this, we require a means by which block-level goals can be
communicated with each I/O request.

3. DESIGN
Differentiated Storage Services closes the semantic gap between computer and storage
systems, but does so in a way that is practical in an industry built around blocks. The
problem is not the block interface, per se, but a lack of information as to how disk blocks
are being used.

We must careful, though, to not give a storage system too much information, as this could
break interoperability. So, we simply classify I/O requests and communicate block-level
goals (policies) for each class. This allows storage systems to provide meaningful levels of
differentiation, without requiring that detailed semantic information be shared.

3.1 Operating system requirements
We associate a classifier with every block I/O request in the OS. In UNIX and Windows,
we add a classification field to the OS data structure for block I/O (the Linux “BIO,” and
the Windows “IRP”) and we copy this field into the actual I/O command (SCSI or ATA)
before it is sent to the storage system. The expressiveness of this field is only limited by
its size, and in Section 4 we present a SCSI prototype where a 5-bit SCSI field can classify
I/O in up to 32 ways.

In addition to adding the classifier, we modify the OS I/O scheduler, which is responsi-
ble for coalescing contiguous I/O requests, so that requests with different classifiers are
never coalesced. Otherwise, classification information would be lost when two contiguous
requests with different classifiers are combined. This does reduce a scheduler’s ability to co-
alesce I/O, but the benefits gained from providing differentiated service to the uncoalesced
requests justify the cost, and we quantify these benefits in Section 5.

The OS changes needed to enable filesystem I/O classification are minor. In Linux, we
have a small kernel patch. In Windows, we use closed-source filter drivers to provide the
same functionality. Section 4 details these changes.

3.2 Filesystem requirements
First, a filesystem must have a classification scheme for its I/O, and this is to be designed
by a developer that has a good understanding of the on-disk FS data structures and their
performance requirements. Classes should represent blocks with similar goals (e.g., journal
blocks, directory blocks, or file blocks); each class has a unique ID. In Section 4, we present
our prototype classification schemes for Linux Ext3 and Windows NTFS.

Then, the filesystem developer assigns a policy to each class; refer back to the hypothetical
examples given in Table 1. How this policy information is communicated to the storage
system can be vendor specific, such as through an administrative GUI, or even standard-
ized. The Storage Management Initiative Specification (SMI-S) is one possible avenue for



this type of standardization [3]. As a reference policy, also presented in Section 4, we use
a priority-based performance policy for storage system cache management.

Once mounted, the filesystem classifies I/O as per the classification scheme. And blocks
may be reclassified over time. Indeed, block reuse in the filesystem (e.g., file deletion or
defragmentation) may result in frequent reclassification.

3.3 Storage system requirements
Upon receipt of a classified I/O, the storage system must extract the classifier, lookup the
policy associated with the class, and enforce the policy using any of its internal mechanisms;
legacy systems without differentiated service can ignore the classifier. The mechanisms
used to enforce a policy are completely vendor specific, and in Section 4 we present our
prototype mechanism (priority-based caching) that enforces the FS-specified performance
priorities.

Because each I/O carries a classifier, the storage system does not need to record the class
of each block. Once allocated from a particular storage pool, the storage system is free to
discard the classification information. So, in this respect, Differentiated Storage Services
is a stateless protocol. However, if the storage system wishes to later move blocks across
storage pools, or otherwise change their QoS, it must do so in an informed manner. This
must be considered, for example, during de-duplication. Blocks from the same allocation
pool (hence, same QoS) can be de-duplicated. Blocks from different pools cannot.

If the classification of a block changes due to block re-use in the filesystem, the storage
system must reflect that change internally. In some cases, this may mean moving one
or more blocks across storage pools. In the case of our cache prototype, a classification
change can result in cache allocation, or the eviction of previously cached blocks.

3.4 Application requirements
Applications can also benefit from I/O classification; two good examples are databases
and virtual machines. To allow for this, we propose a new file flag O_CLASSIFIED. When a
file is opened with this flag, we overload the POSIX scatter/gather operations (readv and
writev) to include one extra list element. This extra element points to a 1-byte user buffer
that contains the classification ID of the I/O request. Applications not using scatter/gather
I/O can easily convert each I/O to a 2-element scatter/gather list. Applications already
issuing scatter/gather need only create the additional element.

Next, we modify the OS virtual file system (VFS) in order to extract this classifier from each
readv() and writev() request. Within the VFS, we know to inspect the file flags when
processing each scatter/gather operation. If a file handle has the O_CLASSIFIED flag set, we
extract the I/O classifier and reduce the scatter/gather list by one element. The classifier
is then bound to the kernel-level I/O request, as described in Section 3.1. Currently, our
user-level classifiers override the FS classifiers. If a user-level class is specified on a file
I/O, the filesystem classifiers will be ignored.

Without further modification to POSIX, we can now explore various ways of differen-
tiating user-level I/O. In general, any application with complex, yet structured, block
relationships [29] may benefit from user-level classification. In this paper, we begin with
the database and, in Section 4, present a proof-of-concept classification scheme for Post-
greSQL [33]. By simply classifying database I/O requests (e.g., user tables versus indexes),
we provide a simple way for storage systems to optimize access to on-disk database struc-
tures.



4. IMPLEMENTATION
We present our implementations of Differentiated Storage Services, including two filesys-
tem prototypes (Linux Ext3 and Windows NTFS), one database proof-of-concept (Linux
PostgreSQL), and two storage system prototypes (SW RAID and iSCSI). Our storage sys-
tems implement a priority-based performance policy, so we map each class to a priority
level (refer back to Table 1 for other possibilities). For the FS, the priorities reflect our goal
to reduce small random access in the storage system, by giving small files and metadata
higher priority than large files. For the DB, we simply demonstrate the flexibility of our
approach by assigning caching policies to common data structures (indexes, tables, and
logs).

4.1 OS changes needed for FS classification
The OS must provide in-kernel filesystems with an interface for classifying each of their
I/O requests. In Linux, we do this by adding a new classification field to the FS-visible
kernel data structure for disk I/O (struct buffer_head). This code fragment illustrates
how Ext3 can use this interface to classify the OS disk buffers into which an inode (class
5 in this example) will be read:

bh->b_class = 5; /* classify inode buffer */

submit_bh(READ, bh); /* submit read request */

Once the disk buffers associated with an I/O are classified, the OS block layer has the infor-
mation needed to classify the block I/O request used to read/write the buffers. Specifically,
it is in the implementation of submit_bh that the generic block I/O request (the BIO) is
generated, so it is here that we copy in the FS classifier:

int submit_bh(int rw, struct buffer_head * bh) {

...

bio->bi_class = bh->b_class /* copy in class */

submit_bio(rw, bio); /* issue read */

...

return ret;

}

Finally, we copy the classifier once again from the BIO into the 5-bit, vendor-specific Group

Number field in byte 6 of the SCSI CDB. This one-line change is all that is need to enable
classification at the SCSI layer:

SCpnt->cmnd[6] = SCpnt->request->bio->bi_class;

These 5 bits are included with each WRITE and READ command, and we can fill this field
in up to 32 different ways (25). An additional 3 reserved bits could also be used to classify
data, allowing for up to 256 classifiers (28), and there are ways to grow even beyond this
if necessary (e.g., other reserved bits, or extended SCSI commands).

In general, adding I/O classification to an existing OS is a matter of tracking an I/O as
it proceeds from the filesystem, through the block layer, and down to the device drivers.
Whenever I/O requests are copied from one representation to another (e.g., from a buffer
head to a BIO, or from a BIO to a SCSI command), we must remember to copy the
classifier. Beyond this, the only other minor change is to the I/O scheduler which, as
previously mentioned, must be modified so that it only coalesces requests that carry the
same classifier.

Overall, adding classification to the Linux block layer requires that we modify 10 files (156
lines of code), which results in a small kernel patch. Table 2 summarize the changes. In
Windows, the changes are confined to closed-source filter drivers. No kernel code needs to
be modified because, unlike Linux, Windows provides a stackable filter driver architecture
for intercepting and modifying I/O requests.



Block layer LOC Change made
bio.h 1 Add classifier

blkdev.h 1 Add classifier
buffer head.h 13 Add classifier

bio.c 2 Copy classifier
buffer.c 26 Copy classifier
mpage.c 23 Copy classifier
bounce.c 1 Copy classifier

blk-merge.c 28 Merge I/O of same class
direct-io.c 60 Classify file sizes

sd.c 1 Insert classifier into CDB

Table 2: Linux 2.6.34 files modified for I/O classification. Modified lines of
code (LOC) shown.

Ext3 Class Class ID Priority
Superblock 1 0

Group Descriptor 2 0
Bitmap 3 0
Inode 4 0

Indirect block 5 0
Directory entry 6 0
Journal entry 7 0
File <= 4KB 8 1
File <= 16KB 9 2

... ... ...
File > 1GB 18 11
Unclassified 0 12

Table 3: Reference classes and caching priorities for Ext3. Each class is as-
signed a unique SCSI Group Number and assigned a priority (0 is highest).

4.2 Filesystem prototypes
A filesystem developer must devise a classification scheme and assign storage policies to
each class. The goals of the filesystem (performance, reliability, or security) will influence
how I/O is classified and policies are assigned.

4.2.1 Reference classification scheme
The classification schemes for the Linux Ext3 and Windows NTFS are similar, so we only
present Ext3. Any number of schemes could have been chosen, and we begin with one
well-suited to minimizing random disk access in the storage system. The classes include
metadata blocks, directory blocks, journal blocks, and regular file blocks. File blocks are
further classified by the file size (≤4KB, ≤16KB, ≤64KB, ≤256KB, ..., ≤1GB, >1GB) —
11 file size classes in total.

The goal of our classification scheme is to provide the storage system with a way of prior-
itizing which blocks get cached and the eviction order of cached blocks. Considering the
fact that metadata and small files can be responsible for the majority of the disk seeks,
we classify I/O in such a way that we can separate these random requests from large-file
requests that are commonly accessed sequentially. Database I/O is an obvious exception
and, in Section 4.3 we introduce a classification scheme better suited for the database.

Table 3 (first two columns) summarizes our classification scheme for Linux Ext3. Every
disk block that is written or read falls into exactly one class. Class 0 (unclassified) occurs



Ext3 LOC Change made
balloc.c 2 Classify block bitmaps

dir.c 2 Classify inodes tables
ialloc.c 2 Classify inode bitmaps
inode.c 94 Classify indirect blocks,

inodes, dirs, and file sizes
super.c 15 Classify superblocks, journal

blocks, and group descriptors
commit.c 3 Classify journal I/O
journal.c 6 Classify journal I/O
revoke.c 2 Classify journal I/O

Table 4: Ext3 changes for Linux 2.6.34.

when I/O bypasses the Ext3 filesystem. In particular, all I/O created during filesystem
creation (mkfs) is unclassified, as there is no mounted filesystem to classify the I/O. The
next 5 classes (superblocks through indirect data blocks) represent filesystem metadata,
as classified by Ext3 after it has been mounted. Note, the unclassified metadata blocks
will be re-classified as one of these metadata types when they are first accessed by Ext3.
Although we differentiate metadata classes 1 through 5, we could have combined them
into one class. For example, it is not critical that we differentiate superblocks and block
bitmaps, as these structures consume very little disk (and cache) space. Still, we do this
for illustrative purposes and system debugging.

Continuing, class 6 represents directory blocks, class 7 journal blocks, and 8-18 are the file
size classes. File size classes are only approximate. As a file is being created, the file size
is changing while writes are being issued to the storage system; files can also be truncated.
Subsequent I/O to a file will reclassify the blocks with the latest file size.

Approximate file sizes allow the storage system to differentiate small files from large files.
For example, a storage system can cache all files 1MB or smaller, by caching all the file
blocks with a classification up to 1MB. The first 1MB of files larger than 1MB may also
fall into this category until they are later reclassified. This means that small files will fit
entirely in cache, and large files may be partially cached with the remainder stored on
disk.

We classify Ext3 using 18 of the 32 available classes from a 5-bit classifier. To implement
this classification scheme, we modify 8 Ext3 files (126 lines of code). Table 4 summarizes
our changes.

The remaining classes (19 through 31) could be used in other ways by the FS (e.g., text
vs. binary, media file, bootable, read-mostly, or hot file), and we are exploring these as part
of our future work. The remaining classes could also be used by user-level applications,
like the database.

4.2.2 Reference policy assignment
Our prototype storage systems implement 16 priorities; to each class we assign a priority
(0 is the highest). Metadata, journal, and directory blocks are highest priority, followed by
the regular file blocks. 4KB files are higher priority than 16KB files, and so on. Unclassified
I/O, or the unused metadata created during file system creation, is assigned the lowest
priority. For this mapping, we only require 13 priorities, so 3 of the priority levels (13-15)
are unused. See Table 3.

This priority assignment is specifically tuned for a file server workload (e.g., SPECsfs), as



we will show in Section 5, and reflects our bias to optimize the filesystem for small files
and metadata. Should this goal change, the priorities could be set differently. Should the
storage system offer policies other than priority levels (like those in Table 1), the FS classes
would need to be mapped accordingly.

4.3 Database proof-of-concept
In addition to the kernel-level I/O classification interface described in Section 4.1, we
provide a POSIX interface for classifying user-level I/O. The interface builds on the scat-
ter/gather functionality already present in POSIX.

Using this new interface, we classify all I/O from the PostgreSQL open source database [33].
As with FS classification, user-level classifiers are just numbers used to distinguish the
various I/O classes, and it is the responsibility of the application (a DB in this case) to
design a classification scheme and associate storage system policies with each class.

4.3.1 A POSIX interface for classifying DB I/O
We add an additional scatter/gather element to the POSIX readv and writev system
calls. This element points to a user buffer that contains a classifier for the given I/O. To
use our interface, a file is opened with the flag O_CLASSIFIED. When this flag is set, the
OS will assume that all scatter/gather operations contain 1 + n elements, where the first
element points to a classifier buffer and the remaining n elements point to data buffers.
The OS can then extract the classifier buffer, bind the classifier to the kernel-level I/O
(as described in Section 4.1), reduce the number of scatter gather elements by one, and
send the I/O request down to the filesystem. Table 5 summarizes the changes made to
the VFS to implement user-level classification. As with kernel-level classification, this is a
small kernel patch.

The following code fragment illustrates the concept for a simple program with a 2-element
gathered-write operation:

unsigned char class = 23; /* a class ID */

int fd = open("foo", O_RDWR|O_CLASSIFIED);

struct iovec iov[2]; /* an sg list */

iov[0].iov_base = &class; iov[0].iov_len = 1;

iov[1].iov_base = "Hello, world!";

iov[1].iov_len = strlen("Hello, world!");

rc = writev(fd, iov, 2); /* 2 elements */

close(fd);

The filesystem will classify the file size as described in Section 4.2, but we immediately
override this classification with the user-level classification, if it exists. Combining user-
level and FS-level classifiers is an interesting area of future work.

4.3.2 A DB classification scheme
Our proof-of-concept PostgreSQL classification scheme includes the transaction log, system
tables, free space maps, temporary tables, user tables, and indexes. And we further classify
the user tables by their access pattern, which the PostgreSQL database already identifies,
internally, as random or sequential. Passing this access pattern information to the storage
system avoids the need for (laborious) sequential stream detection.

Table 6 summarizes our proof-of-concept DB classification scheme, and Table 7 shows the
minor changes required of PostgreSQL. We include this database example to demonstrate
the flexibility of our approach and the ability to easily classify user-level I/O. How to



OS file LOC Change made
filemap.c 50 Extract class from sg list

mm.h 4 Add classifier to readahead
readahead.c 22 Add classifier to readahead

mpage.h 1 Add classifier to page read
mpage.c 5 Add classifier to page read

fs.h 1 Add classifier to FS page read
ext3/inode.c 2 Add classifier to FS page read

Table 5: Linux changes for user-level classification.

DB class Class ID
Unclassified 0

Transaction Log 19
System table 20

Free space map 21
Temporary table 22

Random user table 23
Sequential user table 24

Index file 25
Reserved 26-31

Table 6: A classification scheme PostgreSQL. Each class is assigned a unique
number. This number is copied into the 5-bit SCSI Group Number field in
the SCSI WRITE and READ commands.

DB file LOC Change made
rel.h 6 Pass classifier to storage manager
xlog.c 7 Classify transaction log

bufmgr.c 17 Classify indexes, system tables,
and regular tables

freelist.c 7 Classify sequential vs. random
smgr.c/md.c 21 Assign SCSI groups numbers

fd.c 20 Add classifier to scatter/gather
and classify temp. tables

Table 7: PostgreSQL changes.



properly assign block-level caching priorities for the database is part of our current research,
but we do share some early results in Section 5 to demonstrate the performance potential.

4.4 Storage system prototypes
With the introduction of solid-state storage, storage system caches have increased in pop-
ularity. Examples include LSI’s CacheCade and Adaptec’s MaxIQ. Each of these systems
use solid-state storage as a persistent disk cache in front of a traditional disk-based RAID
array.

We create similar storage system caches and apply the necessary modification to take
advantage of I/O classification. In particular, we introduce two new caching algorithms:
selective allocation and selective eviction. These algorithms inspect the relative priority
of each I/O and, as such, provide a mechanism by which computer system performance
policies can be enforced in a storage system. These caching algorithms build upon a
baseline cache, such as LRU.

4.4.1 Our baseline storage system cache
Our baseline cache uses a conventional write-back cache with LRU eviction. Recent re-
search shows that solid-state LRU caching solutions are not cost-effective for enterprise
workloads [31]. We confirm this result in our evaluation, but also build upon it by demon-
strating that a conventional LRU algorithm can be cost-effective with Differentiated Stor-
age Services. Algorithms beyond LRU [13, 25] may produce even better results.

A solid-state drive is used as the cache, and we divide the SSD into a configurable number
of allocation units. We use 8 sectors (4KB, a common memory page size) as the allocation
unit, and we initialize the cache by contiguously adding all of these allocation units to a
free list. Initially, this free list contains every sector of the SSD.

For new write requests, we allocate cache entries from this free list. Once allocated, the
entries are removed from the free list and added to a dirty list. We record the entries
allocated to each I/O, by saving the mapping in a hash table keyed by the logical block
number.

A syncer daemon monitors the size of the free list. When the free list drops below a low
watermark, the syncer begins cleaning the dirty list. The dirty list is sorted in LRU order.
As dirty entries are read or written, they are moved to the end of the dirty list. In this
way, the syncer cleans the least recently used entries first. Dirty entries are read from the
SSD and written back to the disk. As entries are cleaned, they are added back to the free
list. The free list is also sorted in LRU order, so if clean entries are accessed while in the
free list, they are moved to the end of the free list.

It is atop this baseline cache that we implement selective allocation and selective eviction.

4.4.2 Conventional allocation
Two heuristics are commonly used by current storage systems when deciding whether to
allocate an I/O request in the cache. These relate to the size of the request and its access
pattern (random or sequential). For example, a 256KB request in NTFS tells you that
the file the I/O is directed to is at least 256KB in size, and multiple contiguous 256KB
requests indicate that the file may be larger. It is the small random requests that benefit
most from caching, so large requests or requests that appear to be part of a sequential
stream will often bypass the cache, as such requests are just as efficiently served from disk.
There are at least two fundamental problems with this approach.

First, the block-level request size is only partially correlated with file size. Small files can



be accessed with large requests, and large files can be accessed with small requests. It all
depends on the application request size and caching model (e.g., buffered or direct). A
classic example of this is the NTFS Master File Table (MFT). This key metadata structure
is a large, often sequentially written file. Though when read, the requests are often small
and random. If a storage system were to bypass the cache when the MFT is being written,
subsequent reads would be forced to go to disk. Fixing this problem would require that the
MFT be distinguished from other large files and, without an I/O classification mechanism,
this would not be easy.

The second problem is that operating systems have a maximum request size (e.g., 512KB).
If one were to make a caching decision based on request size, one could not differentiate
file sizes that were larger than this maximum request. This has not been a problem with
small DRAM caches, but solid-state caches are considerably larger and can hold many
files. So, knowing that a file is, say, 1MB as opposed to 1GB is useful when making a
caching decision. For example, it can be better to cache more small files than fewer large
ones, which is particularly the case for file servers that are seek-limited from small files
and their metadata.

4.4.3 Selective allocation
Because of the above problems, we do not make a cache allocation decision based on
request size. Instead, for the FS prototypes, we differentiate metadata from regular files,
and we further differentiate the regular files by size.

Metadata and small files are always cached. Large files are conditionally cached. Our
current implementation checks to see if the syncer daemon is active (cleaning dirty en-
tries), which indicates cache pressure, and we opt to not cache large files in this case (our
configurable cut-off is 1MB or larger — such blocks will bypass the cache). However, an
idle syncer daemon indicates that there is space in the cache, so we choose to cache even
the largest of files.

4.4.4 Selective eviction
Selective eviction is similar to selective allocation in its use of priority information. Rather
than evict entries in strict LRU order, we evict the lowest priority entries first. This is
accomplished by maintaining a dirty list for each I/O class. When the number of free
cache entries reaches a low watermark, the syncer cleans the lowest priority dirty list first.
When that list is exhausted, it selects the next lowest priority list, and so on, until a high
watermark of free entries is reached and the syncer is put to sleep.

With selective eviction, we can completely fill the cache without the risk of priority inver-
sion. For an FS, this allows the caching of larger files, but not at the expense of evicting
smaller files. Large files will evict themselves under cache pressure, leaving the small files
and metadata effectively pinned in the cache. High priority I/O will only be evicted after
all lower priority data has been evicted. As we illustrate in our evaluation, small files and
metadata rarely get evicted in our enterprise workloads, which contain realistic mixes of
small and large file size [29].

4.4.5 Linux implementation
We implement a SW cache as RAID level 9 in the Linux RAID stack (MD).1 The mapping
to RAID is a natural one. RAID levels (e.g., 0, 1, 5) and the nested versions (e.g., 10, 50)
simply define a static mapping from logical blocks within a volume to physical blocks on
storage devices. RAID-0, for example, specifies that logical blocks will be allocated round-
robin. A Differentiated Storage Services architecture, in comparison, provides a dynamic

1RAID-9 is not a standard RAID level, but simply a way for us to create cached volumes
in Linux MD.



mapping. In our implementation, the classification scheme and associated policies provide
a mapping to either the cache device or the storage device, though one might also consider
a mapping to multiple cache levels or different storage pools.

Managing the cache as a RAID device allows us to build upon existing RAID management
utilities. We use the Linux mdadm utility to create a cached volume. One simply specifies
the storage device and the caching device (devices in /dev), both of which may be another
RAID volume. For example, the cache device may be a mirrored pair of SSDs, and the
storage device a RAID-50 array. Implementing Differentiated Storage Services in this
manner makes for easy integration into existing storage management utilities.

Our SW cache is implemented in a kernel RAID module that is loaded when the cached
volume is created; information regarding the classification scheme and priority assignment
are passed to the module as runtime parameters. Because the module is part of the kernel,
I/O requests are terminated in the block layer and never reach the SCSI layer. The I/O
classifiers are, therefore, extracted directly from the block I/O requests (BIOs), not the
5-bit classification field in the SCSI request.

4.4.6 iSCSI implementation
Our second storage system prototype is based on iSCSI [12]. Unlike the RAID-9 prototype,
iSCSI is OS-independent and can be accessed by both Linux and Windows. In both cases,
the I/O classifier is copied into the SCSI request on the host. On the iSCSI target the
I/O classifier is extracted from the request, the priority of the I/O class is determined,
and a caching decision is made. The caching implementation is identical to the RAID-9
prototype.

5. EVALUATION
We evaluate our filesystem prototypes using a file server workload (based on SPECsfs [44]),
an e-mail server workload (modeled after the Swiss Internet Analysis [30]), a set of filesys-
tem utilities (find, tar, and fsck), and a database workload (TPC-H [47]).

We present data from the Linux RAID-9 implementation for the filesystem workloads;
NTFS results using our iSCSI prototype are similar. For Linux TPC-H, we use iSCSI.

5.1 Experimental setup
All experiments are run on a single Linux machine. Our Linux system is a 2-way quad-core
Xeon server system (8 cores) with 8GB of RAM. We run Fedora 13 with a 2.6.34 kernel
modified as described in Section 4. As such, the Ext3 filesystem is modified to classify all
I/O, the block layer copies the classification into the Linux BIO, and the BIO is consumed
by our cache prototype (a kernel module running in the Linux RAID (MD) stack).

Our storage device is a 5-disk LSI RAID-1E array. Atop this base device we configure a
cache as described in Section 4.4.5, or 4.4.6 (for TPC-H); an Intel R©32GB X25-E SSD is
used as the cache. For each of our tests, we configure a cache that is a fraction of the used
disk capacity (10-30%).

5.2 Workloads
Our file server workload is based on SPECsfs2008 [44]; the file size distributions are shown
in Table 8 (File server). The setup phase creates 262,144 files in 8,738 directories (SFS
specifies 30 files per directory). The benchmark performs 262,144 transactions against
this file pool, where a transaction is reading an existing file or creating a new file. The
read/write ratio is 2:1. The total capacity used by this test is 184GB, and we configure
an 18GB cache (10% of the file pool size). We preserve the file pool at the end of the file



File size File server E-mail server
1K 17% 0
2K 16% 24%
4K 16% 26%
8K 7% 18%
16K 7% 12%
32K 9% 6%
64K 7% 5%
128K 5% 3%
256K 5% 2%
512K 4% 2%
1M 3% 1%
2M 2% 0%
8M 1% 0%
10M 0% 1%
32M 1% 0%

Table 8: File size distributions.

transactions and run a set of filesystem utilities. Specifically, we search for a non-existent
file (find), archive the filesystem (tar), and then check the filesystem for errors (fsck).

Our e-mail server workload is based on a study of e-mail server file sizes [30]. We use
a request size of 4KB and a read/write ratio of 2:1. The setup phase creates 1 million
files in 1,000 directories. We then perform 1 million transactions (reading or creating an
e-mail) against this file pool. The file size distribution for this workload is shown in Table 8
(E-mail server). The total disk capacity used by this test is 204GB, and we configure a
20GB cache.

Finally, we run the TPC-H decision support workload [47] atop our modified PostgreSQL [33]
database (Section 4.3). Each PostgreSQL file is opened with the flag O_CLASSIFIED,
thereby enabling user-level classification and disabling file size classification from Ext3.
We build a database with a scale factor of 8, resulting in an on-disk footprint of 29GB,
and we run the I/O intensive queries (2, 17, 18, and 19) back-to-back. We compare 8GB
LRU and LRU-S caches.

5.3 Test methodology
We use an in-house, file-based workload generator for the file and e-mail server work-
loads. As input, the generator takes a file size distribution, a request size distribution, a
read/write ratio, and the number of subdirectories.

For each workload, our generator creates the specified number of subdirectories and, within
these subdirectories, creates files using the specified file and write request size distribution.
After the pool is created, transactions are performed against the pool, using these same
file and request size distributions. We record the number of files written/read per second
and, for each file size, the 95th percentile (worst case) latency, or the time to write or read
the entire file.

We compare the performance of three storage configurations: no SSD cache, an LRU cache,
and an enhanced LRU cache (LRU-S) that uses selective allocation and selective eviction.
For the cached tests, we also record the contents of the cache on a class-by-class basis,
the read hit rate, and the eviction overhead (percentage of transferred blocks related to
cleaning the cache). These three metrics are performance indicators used to explain the
performance differences between LRU and LRU-S. Elapsed time is used as the performance



(a) LRU cache and I/O breakdown (b) LRU-S cache and I/O break-
down

Figure 2: SFS results. Cache contents and breakdown of blocks written/read.

(a) Read hit rate (b) Syncer overhead (c) SFS performance

Figure 3: SFS performance indicators

metric in all tests.

5.4 File server
Figure 2a shows the contents of the LRU cache at completion of the benchmark (left
bar), the percentage of blocks written (middle bar), and the percentage of blocks read
(right bar). The cache bar does not exactly add to 100% due to round-off.2 Although
the cache activity (and contents) will naturally differ across applications, these results are
representative for a given benchmark across a range of different cache sizes.

As shown in the figure, the LRU breakdown is similar to the blocks written and read.
Most of the blocks belong to large files — a tautology given the file sizes in SPECsfs2008
(most files are small, but most of the data is in large files). Looking again at the leftmost
bar, one sees that nearly the entire cache is filled with blocks from large files. The smallest
sliver of the graph (bottommost layer of cache bar) represents files up to 64KB in size.
Smaller files and metadata consume less than 1% and cannot be seen.

Figure 2b shows the breakdown of the LRU-S cache. The write and read breakdown are
identical to Figure 2a, as we are running the same benchmark, but we see a different
outcome in terms of cache utilization. Over 40% of the cache is consumed by files 64KB
and smaller, and metadata (bottommost layer) is now visible. Unlike LRU eviction alone,
selective allocation and selective eviction limit the cache utilization of large files. As
utilization increases, large-file blocks are the first to be evicted, thereby preserving small
files and metadata.

Figure 3a compares read hit rates. With a 10% cache, the read hit rate is approximately
10%. Given the uniformly random distribution of the SPECsfs2008 workload, this result
is expected. However, although the read hit rates are identical, the miss penalties are not.
In the case of LRU, most of the hits are to large files. In the case of LRU-S, the hits are to

2Some of the classes consume less than 1% and round to 0.



small files and metadata. Given the random seeks associated with small file and metadata,
it is better to miss on large sequential files.

Figure 3b compares the overhead of the syncer daemon, where overhead is the percentage
of transferred blocks due to cache evictions. When a cache entry is evicted, the syncer
must read blocks from the cache device and write them back to the disk device — and
this I/O can interfere with application I/O. Selective allocation can reduce the job of the
syncer daemon by fencing off large files when there is cache pressure. As a result, we
see the percentage of I/O related to evictions drop by more than a factor or 3. This can
translate into more available performance for the application workload.

Finally, Figure 3c shows the actual performance of the benchmark. We compare the
performance of no cache, an LRU cache, and LRU-S. Performance is measured in running
time, so smaller is better. As can be seen in the graph, an LRU cache is only slightly better
than no cache at all, and an LRU-S cache is 80% faster than LRU. In terms of running
time, the no-cache run completes in 135 minutes, LRU in minutes 124, and LRU-S in 69
minutes.

The large performance difference can also be measured by the improvement in file latencies.
Figures 4a and 4b compare the 95th percentile latency of write and read operations, where
latency is the time to write or read an entire file. The x-axis represents the file sizes (as
per SPECsfs2008) and the y-axis represents the reduction in latency relative to no cache
at all. Although LRU and LRU-S reduce write latency equally for many of the file sizes
(e.g., 1KB, 8KB, 256KB, and 512KB), LRU suffers from outliers that account for the
increase in 95th percentile latency. The bars that extend below the x-axis indicate that
LRU increased write latency relative to no cache, due to cache thrash. And the read
latencies show even more improvement with LRU-S. Files 256KB and smaller have latency
reductions greater than 50%, compared to the improvements in LRU which are much more
modest. Recall, with a 10% cache, only 10% of the working set can be cached. Whereas
LRU-S uses this 10% to cache small files and metadata, standard LRU wastes the cache
on large, sequentially-accessed files. Stated differently, the cache space we save by evicting
large files allows for many more small files to be cached.

5.5 E-mail server
The results from the e-mail server workload are similar to the file server. The read cache
hit rate for both LRU and LRU-S is 11%. Again, because the files are accessed with
a uniformly random distribution, the hit rate is correlated with the size of the working
set that is cached. The miss penalties are again quite different. LRU-S reduces the read
latency considerably. In this case, files 32KB and smaller see a large read latency reduction.
For example, the read latency for 2KB e-mails is 85ms, LRU reduces this to 21ms, and
LRU-S reduces this to 4ms (a reduction of 81% relative to LRU).

As a result of the reduced miss penalty and lower eviction overhead (reduced from 54% to
25%), the e-mail server workload is twice as fast when running with LRU-S. Without any
cache, the test completes the 1 million transactions in 341 minutes, LRU completes in 262
minutes, and LRU-S completes in 131 minutes.

Like the file server, an e-mail server is often throughput limited. By giving preference to
metadata and small e-mails, significant performance improvements can be realized. This
benchmark also demonstrates the flexibility of our FS classification approach. That is, our
file size classification is sufficient to handle both file and e-mail server workloads, which
have very different file size distributions.



(a) 95th percentile write latency

(b) 95th percentile read latency

Figure 4: SFS file latencies



(a) LRU cache and I/O breakdown (b) LRU-S cache and I/O break-
down

Figure 5: TPC-H results. Cache contents and breakdown of blocks writ-
ten/read.

(a) Read hit rate (b) Syncer overhead (c) TPC-H performance

Figure 6: TPC-H performance indicators

5.6 FS utilities
The FS utilities further demonstrate the advantages of selective caching. Following the file
server workload, we search the filesystem for a non-existent file (find, a 100% read-only
metadata workload), create a tape archive of an SFS subdirectory (tar), and check the
filesystem (fsck).

For the find operation, the LRU configuration sees an 80% read hit rate, compared to
100% for LRU-S. As a result, LRU completes the find in 48 seconds, and LRU-S in 13
(a 3.7x speedup). For tar, LRU has a 5% read hit rate, compared to 10% for LRU-S.
Moreover, nearly 50% of the total I/O for LRU is related to syncer daemon activity, as
LRU write-caches the tar file, causing evictions of the existing cache entries and leading
to cache thrash. In contrast, the LRU-S fencing algorithm directs the tar file to disk. As
as result, LRU-S completes the archive creation in 598 seconds, compared to LRU’s 850
seconds (a 42% speedup).

Finally, LRU completes fsck in 562 seconds, compared to 94 seconds for LRU-S (a 6x
speedup). Unlike LRU, LRU-S retains filesystem metadata in the cache, throughout all of
the tests, resulting in a much faster consistency check of the filesystem.

5.7 TPC-H
As one example of how our proof-of-concept DB can prioritize I/O, we give highest priority
to filesystem metadata, user tables, log files, and temporary tables; all of these classes are
managed as a single class (they share an LRU list). Index files are given lowest priority.
Unused indexes can consume a considerable amount of cache space and, in these tests,
are served from disk sufficiently fast. We discovered this when we first began analyzing
the DB I/O requests in our storage system. That is, the classified I/O both identifies the
opportunity for cache optimization, and it provides a means by which the optimization
can be realized.



Figure 5 compares the cache contents of LRU and LRU-S. For the LRU test, most of the
cache is consumed by index files; user tables and temporary tables consume the remainder.
Because index files are created after the DB is created, it is understandable why they
consume such a large portion of the cache. In contrast, LRU-S fences off the index files,
leaving more cache space for user tables, which are often accessed randomly.

The end result is an improved cache hit rate (Figure 6a), slightly less cache cleaning
overhead (Figure 6b), and a 20% improvement in query time (Figure 6c). The non-cached
run completes all 4 queries in 680 seconds, LRU in 463 seconds, and LRU-S in 386 seconds.
Also, unlike the file and e-mail server runs, we see more variance in TPC-H running time
when not using LRU-S. This applies to both the non-cached run and the LRU run. Because
of this, we average over three runs and include error bars. As seen in Figure 6c, LRU-S
not only runs faster, but it also reduces performance outliers.

6. RELATED WORK
File and storage system QoS is a heavily researched area. Previous work focuses on QoS
guarantees for disk I/O [54], QoS guarantees for filesystems [4], configuring storage systems
to meet performance goals [55], allocating storage bandwidth to application classes [46],
and mapping administrator-specified goals to appropriate storage system designs [48]. In
contrast, we approach the QoS problem with I/O classification, which benefits from a
coordinated effort between the computer system and the storage system.

More recently, providing performance differentiation (or isolation) has been an active area
of research due to the increasing level in which storage systems are being shared within a
data center. Such techniques manage I/O scheduling to achieve fairness within a shared
storage system [17, 50, 53]. The work presented in this paper provides a finer granularity
of control (classes) for such systems.

Regarding caching, numerous works focus on flash and its integration into storage sys-
tems as a conventional cache [20, 23, 24]. However, because enterprise workloads often
exhibit such poor locality of reference, it can be difficult to make conventional caches
cost-effective [31]. In contrast, we show that selective caching, even when applied to the
simplest of caching algorithms (LRU) can be cost effective. Though we introduce selective
caching in the context of LRU [39], any of the more advanced caching algorithms could
be used, such as LRU-K [32], CLOCK-Pro [13], 2Q [15], ARC [25], LIRS [14], FBR [35],
MQ [59], and LRFU [19].

Our block-level selective caching approach is similar to FS-level approaches, such as Con-
quest [51] and zFS [36], where faster storage pools are reserved for metadata and small
files. And there are other block-level caching approaches with similar goals, but different
approaches. In particular, Hystor [6] uses data migration to move metadata and other
latency sensitive blocks into faster storage, and Karma [57] relies on a priori hints on
database block access patterns to improve multi-level caching.

The characteristics of flash [7] make it attractive as a medium for persistent transac-
tions [34], or to host flash-based filesystems [16]. Other forms of byte-addressable non-
volatile memory introduce additional filesystem opportunities [8].

Data migration [1, 2, 5, 6, 18, 21, 56], in general, is a complement to the work presented in
this article. However, migration can be expensive [22], so it is best to allocate storage from
the appropriate storage during file creation, whenever possible. Many files have well-known
patterns of access, making such allocation possible [26].

And we are not the first to exploit semantic knowledge in the storage system. Most



notably, semantically-smart disks [43] and type-safe disks [40, 58] explore how knowledge
of on-disk data structures can be used to improve performance, reliability, and security.
But we differ, quite fundamentally, in that we send higher-level semantic information with
each I/O request, rather than detailed block information (e.g., inode structure) through
explicit management commands. Further, unlike this previous work, we do not offload
block management to the storage system.

7. CONCLUSION
The inexpressive block interface limits I/O optimization, and it does so in two ways.
First, computer systems are having difficulty optimizing around complex storage system
internals. RAID, caching, and non-volatile memory are good examples. Second, storage
systems, due to a lack of semantic information, experience equal difficulty when trying to
optimize I/O requests.

Yet, an entire computer industry has been built around blocks, so major changes to this
interface are, today, not practical. Differentiated Storage Services addresses this problem
with I/O classification. By adding a small classifier to the block interface, we can associate
QoS policies with I/O classes, thereby allowing computer systems and storage system to
agree on shared, block-level policies. This will enable continued innovation on both sides
of the block interface.

Our filesystem prototypes show significant performance improvements when applied to
storage system caching, and our database proof-of-concept suggests similar improvements.

We are extending our work to other realms such as reliability and security. Over time, as
applications come to expect differentiated service from their storage systems, additional
usage models are likely to evolve.
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